Recent results obtained by 3D discrete Dislocation Dynamics (DD) simulations are reviewed. Firstly, in the case of fatigued AISI 316L stainless steel, it is shown how DD simulations can both explain the formation of persistent slip bands and give a criterion for crack initiation. The same study is performed in the case of precipitate hardened metals where the precipitate size plays a crucial role. Secondly, we show how molecular dynamics (MD) simulations can feed the DD simulations for two applications. The first concerns the modelling of BCC Fe for which the dislocation mobility is derived from MD simulations. The second considers the modelling of irradiated stainless steels (FCC), where MD is used to define the local rules of interactions between dislocations and Frank loops.
Cet article présente une synthèse des derniers résultats obtenus par simulation de Dynamique des Dislocations. Pour commencer, l'étude du comportement en fatigue de l'acier austénitique 316L montre que les simulations de DD peuvent tout à la fois expliquer la formation des bandes de glissement persistent et prédire un critère physique précisant l'amorçage des premières fissures. Une étude similaire réalisée sur des métaux durcis par précipitation montre le rôle primordiale joué par la taille des particules. Ensuite, il est montré deux applications dans lesquelles des simulations de Dynamique Moléculaire (MD) nourrissent les modèles de DD. La première étude concerne la modélisation du fer BCC pour lequel la mobilité des dislocations est déduite de simulations de MD. La deuxième présente une modélisation de la plasticité d'un acier inoxydable irradié (CFC) pour lequel la MD définit les rêgles locales d'interactions entre dislocations et boucles de Frank.
Mot clés : Dynamique des dislocations, Plasticité
Marc C. Fivel 1
@article{CRPHYS_2008__9_3-4_427_0, author = {Marc C. Fivel}, title = {Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour}, journal = {Comptes Rendus. Physique}, pages = {427--436}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.11.005}, language = {en}, }
TY - JOUR AU - Marc C. Fivel TI - Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour JO - Comptes Rendus. Physique PY - 2008 SP - 427 EP - 436 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.11.005 LA - en ID - CRPHYS_2008__9_3-4_427_0 ER -
Marc C. Fivel. Discrete dislocation dynamics: an important recent break-through in the modelling of dislocation collective behaviour. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 427-436. doi : 10.1016/j.crhy.2007.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.005/
[1] The modelling of dislocation patterns, Scripta Metall., Volume 27 (1992), pp. 957-962
[2] Three-dimensional simulations of plastic flow in crystals (M. Marechal; B.L. Holian, eds.), Microscopic Simulations of Complex Hydrodynamic Phenomena, Plenum Press, New York, 1992 ([413])
[3] On plastic deformation and the dynamics of 3D dislocations, Int. J. Mech. Sci., Volume 40 (1999), pp. 113-127
[4] Simulation of dislocations on the mesoscopic scale. I. Methods and examples, J. Appl. Phys., Volume 85 (1999), pp. 108-119
[5] Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, Volume 61 (2000) no. 1, pp. 913-927
[6] Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics, Modelling Simul. Mater. Sci. Eng., Volume 10 (2002) no. 3, pp. 437-468
[7] Computer Simulations of Dislocations, Oxford University Press, 2006 (p. 352)
[8] Mesoscopic scale simulation of dislocation dynamic in fcc metals: Principle and applications, Modelling Simul. Mater. Sci. Eng., Volume 6 (1998) no. 6, pp. 755-770
[9] Introduction to the viewpoint set on: surface effects in cyclic deformation and fatigue, Scripta Metall. Mater., Volume 26 (1992), pp. 1499-1504
[10] Thermal fatigue behavior and dislocation substructures of 316L-type austenitic stainless steels, J. Nucl. Mater., Volume 191–194 (1992), pp. 672-675
[11] Cyclic response and dislocation structures of AISI 316L stainless steel. Part 1: single crystals fatigued at intermediate strain amplitude, Mater. Sci. Eng. A, Volume 186 (1994), pp. 65-86
[12] Dislocation structure in 316L stainless steel cycled with plastic strain amplitudes over a wide interval, Mater. Sci. Eng. A, Volume 187 (1994), pp. 1-9
[13] On the dislocation dynamics of persistent slip bands in cyclically deformed f.c.c. metals, Acta Mater., Volume 46 (1998), pp. 5073-5084
[14] Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel, Acta Mater., Volume 50 (2002), pp. 3767-3780
[15] Study of surface relief evolution in fatigued 316L austenitic stainless steel by afm, Mater. Sci. Eng. A, Volume 351 (2003), pp. 123-132
[16] Low-strain fatigue in AISI 316L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. dislocation microstructures and mechanical behaviour, Philos. Mag., Volume 84 (2004) no. 22, pp. 2257-2275
[17] Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. part 2: Persistent slip markings and micro-crack nucleation, Philos. Mag., Volume 86 (2006) no. 1, pp. 79-97
[18] In situ TEM observations of the cyclic dislocation behaviour in persistent slip bands of copper single crystals, Philos. Mag. A, Volume 51 (1985) no. 5, pp. 675-696
[19] C. Déprés, Modélisation physique des stades précurseurs de l'endommagement en fatigue dans l'acier inoxydable austénitique 316L. PhD thesis, INP Grenoble, Laboratories GPM2 – CEA Saclay/DEN/SRMA, 2004
[20] Fatigue in precipitation hardened materials: a three-dimensional discrete dislocation dynamics modelling of the early cycles, Philos. Mag., Volume 87 (2007) no. 24, pp. 3657-3669
[21] Numerical methods to improve the computing efficiency of discrete dislocation dynamics simulations, J. Comput. Phys., Volume 215 (2006), pp. 417-429
[22] A parallel algorithm for 3D dislocation dynamics, J. Comput. Phys. (2006), pp. 608-621
[23] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates, T. Arsenlis, Scalable line dynamics in paradis, in: Proceedings of the 2004 ACM/IEE Conference on Supercomputing, 2004
[24] Dislocation–impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis, Philos. Mag., Volume 83 (2003) no. 31–34, pp. 3691-3704
[25] Three-dimensional computation of the interaction between a straight dislocation line and a particle, Modelling Simul. Mater. Sci. Eng., Volume 13 (2005), pp. 1163-1173
[26] C.S. Shin, 3D discrete dislocation dynamics applied to dislocation–precipitate interactions, PhD thesis, INP Grenoble, Laboratories GPM2 – Seoul National University, 2004
[27] Dislocation dynamics at low temperature, Phys. Rev., Volume 115 (1959) no. 3, pp. 543-550
[28] The influence of core structure on dislocation mobility, Philos. Mag., Volume 19 (1969), pp. 501-526
[29] Dislocation mobility and the mechanical response of bcc (Ta) single crystals: a mesoscopic approach, Acta Metall. Mater., Volume 46 (1998) no. 9, pp. 3221-3235
[30] Models for long-/short-range interactions and cross slip in 3D dislocation simulation of bcc single crystals, Modelling Simul. Mater. Sci. Eng., Volume 6 (1998), pp. 467-492
[31] Atomistic simulation of kink-pairs of screw dislocations in body-centred cubic iron, Acta Mater., Volume 48 (2000), pp. 4255-4265
[32] Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals, Phys. Rev. Lett., Volume 87 (2001) no. 7, p. 075505
[33] Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett., Volume 95 (2005), p. 215506
[34] The glide of screw dislocations in bcc Fe: atomistic static and dynamic simulations, Acta Mater., Volume 54 (2006), pp. 3407-3416
[35] Atomic modeling of irradiation-induced hardening, C. R. Physique, Volume 9 (2008) no. 3–4, pp. 418-426
[36] Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag., Volume 83 (2003), pp. 3977-3994
[37] Dislocation structures in 16mnd5 pressure vessel steel strained in uniaxial tension, J. Nucl. Mater., Volume 342 (2005), pp. 35-41
[38] Interaction and accumulation of glissile defect clusters near dislocations, J. Nucl. Mater., Volume 276 (2000), pp. 166-177
[39] On dislocation interaction with radiation-induce defect clusters and plastic flow localization in fcc metals, Philos. Mag., Volume 81 (2001) no. 11, pp. 2743-2764
[40] Multiscale modelling of plastic flow localization in irradiated materials, Nature, Volume 406 (2000), pp. 871-874
[41] Modelling of irradiation-induced hardening in metals using dislocation dynamics, Philos. Mag. Lett., Volume 81 (2001) no. 9, pp. 583-593
[42] Mechanisms of dislocation–defect interactions in irradiated metals investigated by computer simulations, J. Nucl. Mater., Volume 307–311 (2002), pp. 843-851
[43] Dislocation pinning by small interstitial loops: a molecular dynamics study, Phys. Rev. Lett., Volume 82 (1999), pp. 3272-3275
[44] Molecular dynamics simulation of screw dislocations interacting with interstitial frank loop in a model fcc crystal, Acta Mater., Volume 52 (2004), pp. 607-614
[45] Atomic-scale plasticity in the presence of frank loops, Philos. Mag., Volume 87 (2007) no. 6, pp. 945-966
[46] Overview of microstructural evolution in neutron-irradiated austenitic stainless steels, J. Nucl. Mater., Volume 205 (1993), p. 118
[47] Deformation of neutron-irradiated copper single crystals, Philos. Mag., Volume 16 (1967), pp. 77-96
Cited by Sources:
Comments - Policy