We review recent developments both in the observation of the Earth's magnetic field (from the short, human life timescale, to the long, geological timescale) and in the modelling of its origin (using the numerical or the experimental approach). We attempt a confrontation of these results, coming from very different fields, and show how, when combined, they can yield a better understanding of the Earth's core dynamics. We assume prior knowledge of dynamo theory, but not of geophysics.
Nous passons en revue les développements récents qu'ont connus à la fois l'observation du champ magnétique terrestre principal (de l'échelle du temps de la vie humaine à celle des temps géologiques) et la modélisation de ses sources, recourant au calcul numérique et à l'expérience. Nous rapprochons ces avancées et montrons comment, lorsqu'on les combine, elles peuvent permettre de mieux comprendre la dynamique du noyau fluide terrestre. Nous supposons une connaissance préalable de la théorie dynamo, mais pas du géomagnétisme.
Mot clés : Dynamo, Magnétohydrodynamique, Turbulence
Emmanuel Dormy 1, 2; Jean-Louis Le Mouël 1
@article{CRPHYS_2008__9_7_711_0, author = {Emmanuel Dormy and Jean-Louis Le Mou\"el}, title = {Geomagnetism and the dynamo: where do we stand?}, journal = {Comptes Rendus. Physique}, pages = {711--720}, publisher = {Elsevier}, volume = {9}, number = {7}, year = {2008}, doi = {10.1016/j.crhy.2008.07.003}, language = {en}, }
Emmanuel Dormy; Jean-Louis Le Mouël. Geomagnetism and the dynamo: where do we stand?. Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 711-720. doi : 10.1016/j.crhy.2008.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.07.003/
[1] Precessional torques as the cause of geomagnetism, J. Geophys. Res., Volume 68 (1963), pp. 2871-2886
[2] A geodynamo powered by luni-solar precession, Geophys. Astrophys. Fluid Dyn., Volume 59 (1991), pp. 209-234
[3] Torque balance and energy budget for the precessionally driven dynamo, Phys. Earth Planet. Int., Volume 11 (1975), pp. 43-60
[4] Can precession power the geomagnetic dynamo?, Geophys. J. R. Astr. Soc., Volume 43 (1975), pp. 661-678
[5] Precession driven dynamos, Phys. Fluids, Volume 17 (2005), p. 034104
[6] Extending comprehensive models of the Earth's magnetic field with Oersted and Champ data, Geophys. J. Int., Volume 159 (2004), pp. 521-547
[7] Third generation of the Potsdam Magnetic Model of the Earth (POMME), Geochem. Geophys. Geosys. G-cubed, Volume 7 (2006) no. 7
[8] CHAOS – a model of the Earth's magnetic field derived from CHAMP, Oersted, and SAC-C magnetic satellite data, Geophys. J. Int., Volume 166 (2006), p. 6775
[9] et al. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, Volume 416 (2002), pp. 620-623
[10] Four centuries of geomagnetic secular variation from historical records, Philos. Trans. A, Volume 358 (2000), pp. 957-990
[11] E. Thellier, Sur l'aimantation des terres cuites et ses applications géophysiques, Thèse de doctorat, Paris, 1938
[12] Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., Volume 15 (1959), pp. 285-376
[13] Sur la direction du champ magnétique terrestre, en France, durant les deux derniers millénaires, Phys. Earth Planet. Int., Volume 24 (1981), pp. 89-132
[14] Sur une accélération récente de la variation séculaire du champ magnétique terrestre, C. R. Acad. Sci. D, Volume 287 (1978), pp. 1095-1098
[15] Three millennia of directional variation of the Earth's magnetic field in western Europe as revealed by archeological artefacts, Phys. Earth Planet. Int., Volume 131 (2002), pp. 81-89
[16] Mantle plumes link magnetic superchrons to phanerozoic mass depletion events, Earth Planet. Sci. Lett., Volume 260 (2007), pp. 495-504
[17] Geomagnetic dipole strength and reversal rate over the past two million years, Nature, Volume 435 (2005), pp. 802-805
[18] Geomagnetic reversals (D. Gubbins; E. Herrero-Bervera, eds.), Encyclopedia of Geomagnetism and Paleomagnetism, Springer, 2007, pp. 339-346
[19] The oscillatory nature of the geomagnetic field during reversals, Earth Planet. Sci. Lett., Volume 262 (2007), pp. 66-76
[20] Numerical models of the geodynamo and observational constraints, Geochem. Geophys. Geosys. (G-cubed), Volume 1 (2000), p. 62
[21] From stable dipolar towards reversing numerical dynamos, Phys. Earth Planet. Int., Volume 131 (2002), p. 29
[22] Numerical modeling of the geodynamo: a systematic parameter study, Geophys. J. Int., Volume 138 (1999), p. 393
[23] Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Int., Volume 166 (2006), pp. 97-114
[24] Time scales separation for dynamo action, Europhys. Lett., Volume 81 (2008), p. 64002
[25] V. Morin, Instabilités et bifurcations associées à la modélisation de la Géodynamo, PhD thesis, Université Paris VII, 2005
[26] On the thermal instability of a rotating fluid sphere containing heat sources, Philos. Trans. A, Volume 263 (1968), pp. 93-117
[27] Thermal instabilities in rapidly rotating systems, J. Fluid Mech., Volume 44 (1970), pp. 441-460
[28] Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator, Science, Volume 309 (2005), p. 459
[29] Gravitational dynamos and the low-frequency geomagnetic secular variation, Proc. Natl. Acad. Sci. USA (PNAS), Volume 104 (2007), p. 20159
[30] The stability of a homopolar dynamo, Proc. Camb. Phil. Soc., Volume 51 (1955), pp. 744-760
[31] Oscillations of a system of disk dynamos, Proc. Camb. Phil. Soc., Volume 54 (1958), pp. 89-105
[32] Structural instability of the Rikitake disk dynamo, Geophys. Res. Lett., Volume 22 (1995), pp. 1057-1059
[33] Simple models and times scales in the dynamo effect, C. R. Physique, Volume 9 (2008) no. 7, pp. 683-688
[34] Reversals of the magnetic field: an attempt to a relaxation model, Phys. Earth Planet. Int., Volume 17 (1977), pp. 55-74
[35] T. Lebrat, E. Dormy, Numerical investigation of a reduced one-dimensional model for the Geodynamo, in: AGU Fall Meeting, 2007
[36] Multiple scale dynamo, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 5510-5514
[37] Up and down cascade in a dynamo model: spontaneous symmetry breaking, Phys. Rev. E, Volume 59 (1999), pp. 5112-5123
[38] Transient evolution regimes in a multiscale dynamo model: time scales of the reversal mechanism, J. Geophys. Res., Volume 110 (2005), p. B01104
[39] The geodynamo as a bistable oscillator, Geophys. Astrophys. Fluid Dyn., Volume 94 (2001), pp. 263-314
[40] A theoretical analysis of the observed variability of the geomagnetic dipole field, Phys. Earth Planet. Int., Volume 130 (2002), pp. 143-157
[41] Are geomagnetic field reversals controlled by turbulence within the Earth core?, Geophys. Res. Lett., Volume 34 (2007), p. L02307
[42] et al. The VKS experiment: turbulent dynamical dynamos, C. R. Physique, Volume 9 (2008) no. 7, pp. 689-701
[43] et al. Magnetic field reversals in a experimental turbulent dynamo, Europhys. Lett., Volume 77 (2007), p. 59001
[44] Experimental study of super-rotation in a magnetostrophic spherical Couette flow, Geophys. Astrophys. Fluid Dyn., Volume 100 (2006) no. 4, pp. 281-298
[45] et al. Oersted initial field model, Geophys. Res. Lett., Volume 27 (2000) no. 22, pp. 3607-3610
[46] A third superchron during the Early Paleozoic, Episodes, Volume 28 (2005), p. 2
Cited by Sources:
Comments - Policy