After years of purely analytical and numerical investigations, the dynamo fluid problem has advanced to a phase of experimental study. We present an outline of the numerical steps that have accompanied the Von Kármán Sodium (VKS) experiment at Cadarache for the past ten years. We show how various numerical studies contributed progressively to the optimization of the experimental facility. The recent success of the VKS2 experiment of September 2006 in achieving dynamo action has prompted an extension of the numerical code. Modeling of the electromotive force induced in the volume of the impellers shows that an axial dipole is excited, as observed in the experiment. We infer from these results that the observed value of the critical magnetic Reynolds number may be linked to the soft iron of the impellers and not to turbulence which occurs for any choice of materials. We conclude with proposals for further lines of numerical development.
Après avoir connu une longue période d'études purement analytiques ou numériques, le problème de la dynamo fluide est entré dans une phase expérimentale depuis quelques années. Nous proposons un résumé des étapes numériques qui ont accompagné la réalisation de l'expérience Von Kármán Sodium (VKS) à Cadarache. Nous montrons comment des études numériques très diverses et successives ont contribué à l'optimisation progressive du montage expérimental. Enfin, le succès de l'expérience VKS2 de septembre 2006 a suscité une extension du programme numérique avec une modélisation de l'induction dans le volume des turbines. Les résultats permettent de conclure que ce n'est pas la turbulence qui contraint le nombre de Reynolds magnétique critique à la valeur observée, mais le fer doux des turbines. Des perspectives de développement numérique sont proposées en conclusion.
Mot clés : Dynamo fluide, Simulations cinématiques, Conditions aux limites magnétiques
Jacques Léorat 1; Caroline Nore 2, 3
@article{CRPHYS_2008__9_7_741_0, author = {Jacques L\'eorat and Caroline Nore}, title = {Interplay between experimental and numerical approaches in the fluid dynamo problem}, journal = {Comptes Rendus. Physique}, pages = {741--748}, publisher = {Elsevier}, volume = {9}, number = {7}, year = {2008}, doi = {10.1016/j.crhy.2008.07.006}, language = {en}, }
Jacques Léorat; Caroline Nore. Interplay between experimental and numerical approaches in the fluid dynamo problem. Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 741-748. doi : 10.1016/j.crhy.2008.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.07.006/
[1] Toward a self-generating magnetic dynamo: The role of turbulence, Phys. Rev. E, Volume 61 (2000), p. 5287
[2] Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., Volume 84 (2000), p. 4365
[3] Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, Volume 13 (2001), p. 561
[4] Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), p. 044702
[5] R.A. Bayliss, C.B. Forest, M.D. Nornberg, E.J. Spence, P.W. Terry, Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow, Phys. Rev. E 75 (2) 026303
[6] Dynamo action of fluid motions with two-dimensional periodicity, Philos. Trans. R. Soc. Lond. A, Volume 271 (1972), pp. 441-454
[7] Theory of the hydromagnetic generator, J. Appl. Mech. Tech. Phys., Volume 14 (1973), p. 775
[8] Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991), pp. 983-986
[9] The 1 : 2 mode interaction in exactly counter-rotating von Kármán swirling flow, J. Fluid Mech., Volume 511 (2003), pp. 51-88
[10] Small-scale structure of the Taylor–Green vortex, J. Fluid Mech., Volume 130 (1983), pp. 411-452
[11] Dynamo action in the Taylor–Green vortex near threshold, Phys. Plasmas, Volume 4 (1997), pp. 1-4
[12] Dynamo action in a forced Taylor–Green vortex, Proc. Dynamo and Dynamics, a Mathematical Challenge, NATO Science Series II, vol. 26, 2001, pp. 51-58
[13] Bifurcations and dynamo action in a Taylor–Green flow, New J. Phys., Volume 9 (2007), p. 308
[14] Dynamo action at low magnetic Prandtl numbers: mean flow versus fully turbulent motions, New J. Phys., Volume 9 (2007), p. 296
[15] Subcritical dynamo bifurcation in the Taylor–Green flow, Phys. Rev. Lett., Volume 99 (2007), p. 224501
[16] Advection of a magnetic field by a turbulent swirling flow, Phys. Rev. E, Volume 58 (1998), pp. 7397-7401
[17] Numerical simulations of cylindrical dynamos: scope and method, Prog. Ser. Am. Inst. Astron. Aeron., Volume 162 (1994), p. 282
[18] Numerical study of homogeneous dynamo based on experimental von Kármán type flows, Eur. Phys. J. B, Volume 33 (2003), p. 469
[19] Towards an experimental von Kármán dynamo: numerical studies for an optimized design, Phys. Fluids, Volume 17 (2005), p. 117104
[20] An interior penalty Galerkin method for the MHD equations in heterogeneous domains, J. Comput. Phys., Volume 221 (2007), pp. 349-369
[21] Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment, Eur. J. Mech. B/Fluids, Volume 25 (2006), pp. 894-908
[22] Galerkin analysis of kinematic dynamos in the von Kármán geometry, Phys. Fluids, Volume 18 (2006), p. 017102
[23] Effects of conductivity jumps in the envelope of a kinematic dynamo flow, C. R. Mecanique, Volume 334 (2006), p. 593
[24] Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows, Europhys. Lett., Volume 82 (2008), p. 29001
[25] Influence of electro-magnetic boundary conditions onto the onset of dynamo action in laboratory experiments, Phys. Rev. E, Volume 68 (2003), p. 066307
[26] R. Laguerre, Approximation des équations de la MHD par une méthode hybride spectrale-éléments finis nodaux : application à l'effet dynamo, PhD thesis, Université Paris VII, 2006
[27] On the magnetic fields generated by experimental dynamos, Geophys. Astrophys. Fluid Dyn., Volume 101 (2007), p. 289
[28] R. Laguerre, C. Nore, A. Ribeiro, J.Léorat, J.L. Guermond, F. Plunian, Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment, Phys. Rev. Lett. (2008), in press
Cited by Sources:
Comments - Policy