Comptes Rendus
The dynamo effect/L'effet dynamo
Interplay between experimental and numerical approaches in the fluid dynamo problem
Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 741-748.

After years of purely analytical and numerical investigations, the dynamo fluid problem has advanced to a phase of experimental study. We present an outline of the numerical steps that have accompanied the Von Kármán Sodium (VKS) experiment at Cadarache for the past ten years. We show how various numerical studies contributed progressively to the optimization of the experimental facility. The recent success of the VKS2 experiment of September 2006 in achieving dynamo action has prompted an extension of the numerical code. Modeling of the electromotive force induced in the volume of the impellers shows that an axial dipole is excited, as observed in the experiment. We infer from these results that the observed value of the critical magnetic Reynolds number may be linked to the soft iron of the impellers and not to turbulence which occurs for any choice of materials. We conclude with proposals for further lines of numerical development.

Après avoir connu une longue période d'études purement analytiques ou numériques, le problème de la dynamo fluide est entré dans une phase expérimentale depuis quelques années. Nous proposons un résumé des étapes numériques qui ont accompagné la réalisation de l'expérience Von Kármán Sodium (VKS) à Cadarache. Nous montrons comment des études numériques très diverses et successives ont contribué à l'optimisation progressive du montage expérimental. Enfin, le succès de l'expérience VKS2 de septembre 2006 a suscité une extension du programme numérique avec une modélisation de l'induction dans le volume des turbines. Les résultats permettent de conclure que ce n'est pas la turbulence qui contraint le nombre de Reynolds magnétique critique à la valeur observée, mais le fer doux des turbines. Des perspectives de développement numérique sont proposées en conclusion.

Published online:
DOI: 10.1016/j.crhy.2008.07.006
Keywords: Fluid dynamo, Kinematic code, Magnetic boundary conditions
Mot clés : Dynamo fluide, Simulations cinématiques, Conditions aux limites magnétiques

Jacques Léorat 1; Caroline Nore 2, 3

1 LUTH, Observatoire de Paris-Meudon, 92195 Meudon, France
2 LIMSI-CNRS, BP 133, 91403 Orsay cedex, France
3 Université Paris Sud 11, département de physique, 91405 Orsay cedex, France
@article{CRPHYS_2008__9_7_741_0,
     author = {Jacques L\'eorat and Caroline Nore},
     title = {Interplay between experimental and numerical approaches in the fluid dynamo problem},
     journal = {Comptes Rendus. Physique},
     pages = {741--748},
     publisher = {Elsevier},
     volume = {9},
     number = {7},
     year = {2008},
     doi = {10.1016/j.crhy.2008.07.006},
     language = {en},
}
TY  - JOUR
AU  - Jacques Léorat
AU  - Caroline Nore
TI  - Interplay between experimental and numerical approaches in the fluid dynamo problem
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 741
EP  - 748
VL  - 9
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.07.006
LA  - en
ID  - CRPHYS_2008__9_7_741_0
ER  - 
%0 Journal Article
%A Jacques Léorat
%A Caroline Nore
%T Interplay between experimental and numerical approaches in the fluid dynamo problem
%J Comptes Rendus. Physique
%D 2008
%P 741-748
%V 9
%N 7
%I Elsevier
%R 10.1016/j.crhy.2008.07.006
%G en
%F CRPHYS_2008__9_7_741_0
Jacques Léorat; Caroline Nore. Interplay between experimental and numerical approaches in the fluid dynamo problem. Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 741-748. doi : 10.1016/j.crhy.2008.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.07.006/

[1] N. Pefley; A. Cawthorne; D. Lathrop Toward a self-generating magnetic dynamo: The role of turbulence, Phys. Rev. E, Volume 61 (2000), p. 5287

[2] A. Gailitis; O. Lielausis; S. Dement'ev; E. Platacis; A. Cifersons Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., Volume 84 (2000), p. 4365

[3] R. Stieglitz; U. Müller Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, Volume 13 (2001), p. 561

[4] R. Monchaux; M. Berhanu; M. Bourgoin; M. Moulin; Ph. Odier; J.-F. Pinton; R. Volk; S. Fauve; N. Mordant; F. Pétrélis; A. Chiffaudel; F. Daviaud; B. Dubrulle; C. Gasquet; L. Marié; F. Ravelet Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), p. 044702

[5] R.A. Bayliss, C.B. Forest, M.D. Nornberg, E.J. Spence, P.W. Terry, Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow, Phys. Rev. E 75 (2) 026303

[6] G.O. Roberts Dynamo action of fluid motions with two-dimensional periodicity, Philos. Trans. R. Soc. Lond. A, Volume 271 (1972), pp. 441-454

[7] Y. Ponomarenko Theory of the hydromagnetic generator, J. Appl. Mech. Tech. Phys., Volume 14 (1973), p. 775

[8] S. Douady; Y. Couder; M.E. Brachet Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991), pp. 983-986

[9] C. Nore; L.S. Tuckerman; O. Daube; S. Xin The 1 : 2 mode interaction in exactly counter-rotating von Kármán swirling flow, J. Fluid Mech., Volume 511 (2003), pp. 51-88

[10] M.E. Brachet; D.I. Meiron; S.A. Orszag; B.G. Nickel; R.H. Morf; U. Frisch Small-scale structure of the Taylor–Green vortex, J. Fluid Mech., Volume 130 (1983), pp. 411-452

[11] C. Nore; M. Brachet; H. Politano; A. Pouquet Dynamo action in the Taylor–Green vortex near threshold, Phys. Plasmas, Volume 4 (1997), pp. 1-4

[12] C. Nore; M. Brachet; H. Politano; A. Pouquet Dynamo action in a forced Taylor–Green vortex, Proc. Dynamo and Dynamics, a Mathematical Challenge, NATO Science Series II, vol. 26, 2001, pp. 51-58

[13] B. Dubrulle; P. Blaineau; O. Mafra Lopes; F. Daviaud; J.-P. Laval; R. Dolganov Bifurcations and dynamo action in a Taylor–Green flow, New J. Phys., Volume 9 (2007), p. 308

[14] Y. Ponty; P. Minnini; J.-F. Pinton; H. Politano; A. Pouquet Dynamo action at low magnetic Prandtl numbers: mean flow versus fully turbulent motions, New J. Phys., Volume 9 (2007), p. 296

[15] Y. Ponty; J.-P. Laval; B. Dubrulle; F. Daviaud; J.-F. Pinton Subcritical dynamo bifurcation in the Taylor–Green flow, Phys. Rev. Lett., Volume 99 (2007), p. 224501

[16] P. Odier; J.-F. Pinton; S. Fauve Advection of a magnetic field by a turbulent swirling flow, Phys. Rev. E, Volume 58 (1998), pp. 7397-7401

[17] J. Leorat Numerical simulations of cylindrical dynamos: scope and method, Prog. Ser. Am. Inst. Astron. Aeron., Volume 162 (1994), p. 282

[18] L. Marié; J. Burguete; F. Daviaud; J. Léorat Numerical study of homogeneous dynamo based on experimental von Kármán type flows, Eur. Phys. J. B, Volume 33 (2003), p. 469

[19] F. Ravelet; A. Chiffaudel; F. Daviaud; J. Léorat Towards an experimental von Kármán dynamo: numerical studies for an optimized design, Phys. Fluids, Volume 17 (2005), p. 117104

[20] J.-L. Guermond; R. Laguerre; J. Léorat; C. Nore An interior penalty Galerkin method for the MHD equations in heterogeneous domains, J. Comput. Phys., Volume 221 (2007), pp. 349-369

[21] F. Stefani; M. Xu; G. Gerbeth; F. Ravelet; A. Chiffaudel; F. Daviaud; J. Léorat Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment, Eur. J. Mech. B/Fluids, Volume 25 (2006), pp. 894-908

[22] L. Marié; C. Normand; F. Daviaud Galerkin analysis of kinematic dynamos in the von Kármán geometry, Phys. Fluids, Volume 18 (2006), p. 017102

[23] R. Laguerre; C. Nore; J. Léorat; J.L. Guermond Effects of conductivity jumps in the envelope of a kinematic dynamo flow, C. R. Mecanique, Volume 334 (2006), p. 593

[24] C. Gissinger; A. Iskakov; S. Fauve; E. Dormy Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows, Europhys. Lett., Volume 82 (2008), p. 29001

[25] R. Avalos-Zunñiga; F. Plunian; A. Gailitis Influence of electro-magnetic boundary conditions onto the onset of dynamo action in laboratory experiments, Phys. Rev. E, Volume 68 (2003), p. 066307

[26] R. Laguerre, Approximation des équations de la MHD par une méthode hybride spectrale-éléments finis nodaux : application à l'effet dynamo, PhD thesis, Université Paris VII, 2006

[27] F. Pétrélis; N. Mordant; S. Fauve On the magnetic fields generated by experimental dynamos, Geophys. Astrophys. Fluid Dyn., Volume 101 (2007), p. 289

[28] R. Laguerre, C. Nore, A. Ribeiro, J.Léorat, J.L. Guermond, F. Plunian, Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment, Phys. Rev. Lett. (2008), in press

Cited by Sources:

Comments - Policy