[Boîtes quantiques colloidales]
Cet article est une revue brève des applications et propriétés des boîtes quantiques colloidales, contrastant avec celles des boîtes quantiques obtenues par croissance Stransky–Krastanov.
The applications and physical properties of colloidal quantum dots are briefly reviewed and contrasted with those of Stransky–Krastanov grown quantum dots.
Mots-clés : Boîte quantique, Colloïde, Nanocristal, Semi-conducteur
Philippe Guyot-Sionnest 1
@article{CRPHYS_2008__9_8_777_0, author = {Philippe Guyot-Sionnest}, title = {Colloidal quantum dots}, journal = {Comptes Rendus. Physique}, pages = {777--787}, publisher = {Elsevier}, volume = {9}, number = {8}, year = {2008}, doi = {10.1016/j.crhy.2008.10.006}, language = {en}, }
Philippe Guyot-Sionnest. Colloidal quantum dots. Comptes Rendus. Physique, Recent advances in quantum dot physics / Nouveaux développements dans la physique des boîtes quantiques, Volume 9 (2008) no. 8, pp. 777-787. doi : 10.1016/j.crhy.2008.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.006/
[1] Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 545-610
[2] Chemistry and properties of nanocrystals of different shapes, Chem. Rev., Volume 105 (2005), pp. 1025-1102
[3] Semiconductor quantum heterostructures, Phys. Today, Volume 14 (1970), p. 61-43
[4] Quantum size effect in 3-dimensional microscopic semiconductor crystals, JETP Lett., Volume 34 (1981), pp. 345-349
[5] Interband absorption of light in a semiconductor sphere, Soviet Phys. Semiconductors–USSR, Volume 16 (1982), pp. 772-775
[6] Multidimensional quantum well laser and temperature dependence of its threshold, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941
[7] A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., Volume 79 (1983), pp. 5566-5571
[8] Chem. Rev., 89 (1989), pp. 1861-1873
[9] Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett., Volume 63 (1993), pp. 3203-3205
[10] Self-organized growth of regular nanometer scale InAs dots on GaAs, Appl. Phys. Lett., Volume 64 (1994), pp. 196-198
[11] Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., Volume 93 (1993), pp. 267-300
[12] Semiconductor crystallites-a class of large molecules, Acc. Chem. Res., Volume 23 (1990), pp. 183-188
[13] Absorption and intensity dependent photoluminescence measurements on CdSe quantum dots–assignment of the 1st electronic transition, J. Opt. Soc. Am. B, Volume 10 (1993), pp. 100-107
[14] Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., Volume 72 (1950), pp. 4847-4854
[15] Controlled growth of monodisperse silica spheres in micron size range, J. Coll. Interf. Sci., Volume 26 (1968), p. 62
[16] Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., Volume 115 (1993), pp. 8706-8715
[17] Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals, J. Phys. Chem., Volume 100 (1996), pp. 468-471
[18] Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., Volume 123 (2001), pp. 183-184
[19] Mechanisms of the shape evolution of CdSe nanocrystals, J. Am. Chem. Soc., Volume 123 (2001), pp. 1389-1395
[20] Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., Volume 122 (2000), pp. 12700-12706
[21] Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc., Volume 125 (2003), pp. 12567-12575
[22] Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc., Volume 128 (2006), pp. 12428-12429
[23] Quantum dot bioconjugates for imaging, labelling and sensing, Nature Mat., Volume 4 (2005), pp. 435-446
[24] Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016
[25] Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018
[26] Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, Volume 370 (1994), pp. 354-357
[27] Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, Volume 420 (2002), pp. 800-803
[28] Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films, Semiconductor Nanocrystals and Silicate Nanoparticles, Structure and Bonding, vol. 118, Springer-Verlag, Berlin, 2005, pp. 1-57
[29] Electrochromic nanocrystal quantum dots, Science, Volume 291 (2001), pp. 2390-2392
[30] Hybrid nanorod-polymer solar cells, Science, Volume 295 (2002), pp. 2425-2427
[31] Quantum dot solar cells, Physica E – Low. Dim. Sys. & Nano., Volume 14 (2002), pp. 115-120
[32] Optical gain and stimulated emission in nanocrystal quantum dots, Science, Volume 290 (2000), pp. 314-317
[33] Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B, Volume 106 (2002), pp. 10634-10640
[34] Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands, J. Chem. Phys., Volume 1123 (2005) (074709)
[35] Electronic structure and optical properties of PbS and PbSe quantum dots, J. Opt. Soc. Am. B, Volume 14 (1997), pp. 1632-1646
[36] The electronic structure of semiconductor nanocrystals, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 475-521
[37] The peculiar electronic structure of PbSe quantum dots, Nano Lett., Volume 6 (2006), pp. 2728-2735
[38] Enhancement of exciton exchange interaction by quantum confinement in CdSe nanocrystals, Jap. J. Appl. Phys., Volume 34 (1994) no. Suppl. 34-1, pp. 12-14
[39] Enhancement of electron–hole exchange interaction in CdSe nanocrystals: A quantum confinement effect, Phys. Rev. B, Volume 53 (1996), pp. 1336-1342
[40] Observation of the dark exciton in CdSe quantum dots, Phys. Rev. Lett., Volume 75 (1995), pp. 3278-3731
[41] Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B, Volume 54 (1996), pp. 4843-4856
[42] Frequency dependent spontaneous emission rate from CdSe and CdTe nanocrystals: the influence of dark states, Phys. Rev. Lett., Volume 95 (2005) (236804)
[43] The excitonic exchange splitting and radiative lifetime in PbSe quantum dots, Nano Lett., Volume 7 (2007), pp. 2129-2135
[44] Time-resolved direct observation of Auger recombination in semiconductor-doped glasses, Appl. Phys. Lett., Volume 51 (1987), pp. 1882-1994
[45] Room temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals, Phys. Rev. Lett., Volume 94 (2005) (087403)
[46] Quantization of multiparticle Auger rates in semiconductor quantum dot, Science, Volume 287 (2000), pp. 1011-1013
[47] Pseudopotential theory of Auger processes in CdSe quantum dots, Phys. Rev. Lett., Volume 91 (2003) (056404)
[48] Single-exciton optical gain in semiconductor nanocrystals, Nature, Volume 447 (2007), pp. 441-446
[49] Intrinsic mechanism for the poor luminescence properties of quantum box systems, Phys. Rev. B, Volume 44 (1991), pp. 10945-10948
[50] Femtosecond 1P to 1S electron relaxation in strongly confined semiconductor nanocrystals, Phys. Rev. Lett., Volume 80 (1998), pp. 4028-4031
[51] Breaking the phonon bottleneck in nanometer quantum dots-role of Auger-like processes, Solid. State. Commun., Volume 93 (1995), pp. 281-284
[52] High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett., Volume 92 (2004) (186601)
[53] Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., Volume 6 (2006), pp. 424-429
[54] Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy, Phys. Rev. B, Volume 76 (2007) (081304)
[55] Multiple Exciton generation in semiconductor quantum dots, Chem. Phys. Lett., Volume 457 (2008), pp. 3-11
[56] Photoluminescence of a single semiconductor nanocrystallites by 2-photon excitation spectroscopy, Chem. Phys. Lett., Volume 229 (1994), pp. 317-322
[57] et al. Photoluminescence of single InAs quantum dot obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), pp. 716-719
[58] Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., Volume 77 (1996), pp. 3873-3876
[59] Photoluminescence wandering in single CdSe nanocrystals, Appl. Phys. Lett., Volume 69 (1996), pp. 3905-3907
[60] Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, Volume 383 (1996), pp. 802-804
[61] Quantum-confined stark effect in single CdSe nanocrystallite quantum dots, Science, Volume 278 (1997), pp. 2114-2117
[62] Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett., Volume 78 (1997), pp. 1110-1113
[63] Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy, Phys. Rev. Lett., Volume 100 (2008) (027403)
[64] Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals, Phys. Rev. B, Volume 67 (2003) (201307)
[65] Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior, J. Chem. Phys., Volume 112 (2000), pp. 3117-3120
[66] Power-law intermittency of single emitters, Curr. Op. Coll. Interf. Sci., Volume 12 (2007), pp. 272-284
[67] n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280
[68] PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors, Science, Volume 310 (2005), pp. 86-89
[69] Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films, J. Phys. Chem. B, Volume 107 (2003), pp. 7355-7359
[70] Variable range hopping conduction in semiconductor nanocrystal solids, Phys. Rev. Lett., Volume 92 (2004) (216802)
[71] n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280
[72] Conduction in charged PbSe nanocrystal films, J. Phys Chem. B, Volume 109 (2005), pp. 20192-20199
[73] Time-resolved photoconductivity of PbSe nanocrystal arrays, J. Phys. Chem. B, Volume 110 (2006), pp. 25455-25461
[74] Quantum dot superlattice thermoelectric materials and devices, Science, Volume 297 (2002), pp. 229-2232
[75] Enhanced thermopower in PbSe nanocrystal quantum dot supperlattices, Nano Lett., Volume 8 (2008), pp. 2283-2288
[76] Giant internal magnetic fields in Mn doped nanocrystal quantum dots, Solid. State Commun., Volume 114 (2000), pp. 547-550
[77] High-quality manganese-doped ZnSe nanocrystals, Nano Lett., Volume 1 (2001), pp. 3-7
[78] Doping semiconductor nanocrystals, Nature, Volume 436 (2005), pp. 91-94
[79] Switching-on superparamagnetism in Mn/CdSe quantum dots, J. Am. Chem. Soc., Volume 128 (2006), pp. 2931-2939
[80] Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots, Nano Lett., Volume 8 (2008), pp. 1197-1201
[81] Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter, Phys. Rev. Lett., Volume 87 (2001) (206601)
[82] Towards non-blinking colloidal quantum dots, Nature Mat., Volume 7 (2008), pp. 659-664
- Incorporation of Water-Soluble Quantum Dots and Formation of Wrinkled Patterns on Acrylic and Silicone Elastomers, ACS Omega, Volume 10 (2025) no. 4, p. 3322 | DOI:10.1021/acsomega.4c04071
- Red Quantum Dot Light‐Emitting Diodes, Colloidal Quantum Dot Light Emitting Diodes (2024), p. 87 | DOI:10.1002/9783527845149.ch4
- Carrier Dynamics in Quantum Dots, Semiconductor Optics 2 (2024), p. 203 | DOI:10.1007/978-3-031-51296-4_8
- Bacterial nanocellulose and CdTe quantum dots: assembled nanopaper for heavy metal detection in aqueous solution, Journal of Materials Chemistry C, Volume 11 (2023) no. 44, p. 15690 | DOI:10.1039/d3tc02927a
- Applications of quantum dots in energy conversion and storage devices, Quantum Dots (2023), p. 383 | DOI:10.1016/b978-0-323-85278-4.00016-7
- Quantum confinement effects and feasible mechanisms of multicolor emitting afterglow nanophosphors, Quantum Dots (2023), p. 99 | DOI:10.1016/b978-0-323-85278-4.00005-2
- Modeling and simulation of the influence of quantum dots density on solar cell properties, The European Physical Journal Plus, Volume 138 (2023) no. 2 | DOI:10.1140/epjp/s13360-023-03736-5
- Boosting the Synthetic Yield and Stability of CsPbBr3 Nanocrystals via Solvent Injection Quenching for Future Microscale Displays, ACS Applied Nano Materials, Volume 5 (2022) no. 8, p. 11889 | DOI:10.1021/acsanm.2c02874
- Structural, Optical, and Magnetic Properties of Gd Doped CdTe Quantum Dots for Magnetic Imaging Applications, ECS Journal of Solid State Science and Technology, Volume 11 (2022) no. 1, p. 013010 | DOI:10.1149/2162-8777/ac4bad
- The effect of graphene on structure and optical properties of CdSe nanoparticles for optoelectronic application, Journal of Alloys and Compounds, Volume 898 (2022), p. 162946 | DOI:10.1016/j.jallcom.2021.162946
- Optical properties of individual CdS/CdSe/CdS nanocrystals: spherical quantum wells as single-photon sources, Nanotechnology, Volume 33 (2022) no. 27, p. 275703 | DOI:10.1088/1361-6528/ac5ee3
- Structural, optical, dielectric and photovoltaic properties of Sn doped CdS films prepared with green synthesis route, Optical Materials, Volume 133 (2022), p. 112964 | DOI:10.1016/j.optmat.2022.112964
- Toward Green Optoelectronics: Environmental-Friendly Colloidal Quantum Dots Photodetectors, Frontiers in Energy Research, Volume 9 (2021) | DOI:10.3389/fenrg.2021.666534
- Progress in Quantum Dot Infrared Photodetectors, Quantum Dot Photodetectors, Volume 30 (2021), p. 1 | DOI:10.1007/978-3-030-74270-6_1
- , 2019 IEEE International Conference on Engineering Veracruz (ICEV) (2019), p. 1 | DOI:10.1109/icev.2019.8920641
- Kolloidal CdSe Kuantum Noktalarının Sentezi ve Optik Karakterizasyonu, Academic Platform Journal of Engineering and Science, Volume 7 (2019) no. 2, p. 229 | DOI:10.21541/apjes.389919
- Role of Localized States in Photoluminescence Dynamics of High Optical Gain CsPbBr3 Nanocrystals, Advanced Optical Materials, Volume 6 (2018) no. 11 | DOI:10.1002/adom.201800109
- References, Engineering, Medicine and Science at the Nano-Scale (2018), p. 233 | DOI:10.1002/9783527692903.refs
- Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots, Sensors and Actuators B: Chemical, Volume 240 (2017), p. 763 | DOI:10.1016/j.snb.2016.08.129
- Double‐Sided Junctions Enable High‐Performance Colloidal‐Quantum‐Dot Photovoltaics, Advanced Materials, Volume 28 (2016) no. 21, p. 4142 | DOI:10.1002/adma.201506213
- Optical Properties of Polymer Nanocomposites, Functional and Physical Properties of Polymer Nanocomposites (2016), p. 139 | DOI:10.1002/9781118542316.ch7
- Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes, Journal of Materials Science: Materials in Electronics, Volume 27 (2016) no. 8, p. 7899 | DOI:10.1007/s10854-016-4781-1
- Influence of Surface Treatment and Annealing Temperature on the Recombination Processes of the Quantum Dots Solar Cells, Journal of Nanomaterials, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/9806386
- Strong Exciton–Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity, Nano Letters, Volume 16 (2016) no. 11, p. 7137 | DOI:10.1021/acs.nanolett.6b03433
- CdSe/ZnS quantum dots as sensors for the local refractive index, Nanoscale, Volume 8 (2016) no. 4, p. 2317 | DOI:10.1039/c5nr06998j
- Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer, ACS Nano, Volume 9 (2015) no. 1, p. 356 | DOI:10.1021/nn5053537
- Graphene, graphene quantum dots and their applications in optoelectronics, Current Opinion in Colloid Interface Science, Volume 20 (2015) no. 5-6, p. 439 | DOI:10.1016/j.cocis.2015.11.007
- Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment, Nanoscale, Volume 7 (2015) no. 36, p. 14897 | DOI:10.1039/c5nr03714j
- In situ synthesis of CdTe:CdS quantum dot nanocomposites for photovoltaic applications, Materials Science in Semiconductor Processing, Volume 25 (2014), p. 238 | DOI:10.1016/j.mssp.2013.12.018
- Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-in-rods, New Journal of Physics, Volume 16 (2014) no. 9, p. 093014 | DOI:10.1088/1367-2630/16/9/093014
- Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn2+-doped ZnO quantum dots, Physical Chemistry Chemical Physics, Volume 16 (2014) no. 33, p. 17507 | DOI:10.1039/c4cp01683a
- Colloidal and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and Comparison, Wiley Encyclopedia of Electrical and Electronics Engineering (2014), p. 1 | DOI:10.1002/047134608x.w8225
- , 2013 IEEE Photonics Conference (2013), p. 240 | DOI:10.1109/ipcon.2013.6656525
- Ultrafast Dynamics of Photogenerated Electrons in CdS Nanocluster Multilayers Assembled on Solid Substrates: Effects of Assembly and Electrode Potential, ChemPhysChem, Volume 14 (2013) no. 10, p. 2174 | DOI:10.1002/cphc.201300427
- Photoacoustic Study of CdS QDs for Application in Quantum‐Dot‐Sensitized Solar Cells, Journal of Nanomaterials, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/498286
- Unique Origin of Colors of Armchair Carbon Nanotubes, Journal of the American Chemical Society, Volume 134 (2012) no. 10, p. 4461 | DOI:10.1021/ja209333m
- Self-Assembly of Colloidal Nanoparticles on Surfaces: Towards Surface Nanopatterning, Nanostructured Materials and Their Applications (2012), p. 191 | DOI:10.1007/978-3-642-22227-6_10
- Self-calibrating quantum state tomography, New Journal of Physics, Volume 14 (2012) no. 8, p. 085003 | DOI:10.1088/1367-2630/14/8/085003
- Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface, Journal of Applied Physics, Volume 109 (2011) no. 10 | DOI:10.1063/1.3587168
- Probing the Local Site Environments in Mn:CdSe Quantum Dots, The Journal of Physical Chemistry C, Volume 115 (2011) no. 47, p. 23305 | DOI:10.1021/jp2082215
- , 2010 35th IEEE Photovoltaic Specialists Conference (2010), p. 002955 | DOI:10.1109/pvsc.2010.5614495
- Interface Modifications of InAs Quantum‐Dots Solids and their Effects on FET Performance, Advanced Functional Materials, Volume 20 (2010) no. 6, p. 1005 | DOI:10.1002/adfm.200902149
- 3-component low temperature solvothermal synthesis of colloidal cadmium sulfide quantum dots, Materials Letters, Volume 64 (2010) no. 6, p. 785 | DOI:10.1016/j.matlet.2010.01.021
- Four-Fold Enhancement of the Activation Energy for Nonradiative Decay of Excitons in PbSe/CdSe Core/Shell versus PbSe Colloidal Quantum Dots, The Journal of Physical Chemistry Letters, Volume 1 (2010) no. 15, p. 2334 | DOI:10.1021/jz1007565
- Tetrachromatic Hybrid White Light-Emitting Diodes and the Energy Transfer Between Conjugated Polymers and CdSe/ZnS Quantum Dots, Journal of The Electrochemical Society, Volume 156 (2009) no. 8, p. H625 | DOI:10.1149/1.3138462
Cité par 45 documents. Sources : Crossref
Commentaires - Politique