[Boîtes quantiques colloidales]
Cet article est une revue brève des applications et propriétés des boîtes quantiques colloidales, contrastant avec celles des boîtes quantiques obtenues par croissance Stransky–Krastanov.
The applications and physical properties of colloidal quantum dots are briefly reviewed and contrasted with those of Stransky–Krastanov grown quantum dots.
Mot clés : Boîte quantique, Colloïde, Nanocristal, Semi-conducteur
Philippe Guyot-Sionnest 1
@article{CRPHYS_2008__9_8_777_0, author = {Philippe Guyot-Sionnest}, title = {Colloidal quantum dots}, journal = {Comptes Rendus. Physique}, pages = {777--787}, publisher = {Elsevier}, volume = {9}, number = {8}, year = {2008}, doi = {10.1016/j.crhy.2008.10.006}, language = {en}, }
Philippe Guyot-Sionnest. Colloidal quantum dots. Comptes Rendus. Physique, Volume 9 (2008) no. 8, pp. 777-787. doi : 10.1016/j.crhy.2008.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.006/
[1] Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 545-610
[2] Chemistry and properties of nanocrystals of different shapes, Chem. Rev., Volume 105 (2005), pp. 1025-1102
[3] Semiconductor quantum heterostructures, Phys. Today, Volume 14 (1970), p. 61-43
[4] Quantum size effect in 3-dimensional microscopic semiconductor crystals, JETP Lett., Volume 34 (1981), pp. 345-349
[5] Interband absorption of light in a semiconductor sphere, Soviet Phys. Semiconductors–USSR, Volume 16 (1982), pp. 772-775
[6] Multidimensional quantum well laser and temperature dependence of its threshold, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941
[7] A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., Volume 79 (1983), pp. 5566-5571
[8] Chem. Rev., 89 (1989), pp. 1861-1873
[9] Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett., Volume 63 (1993), pp. 3203-3205
[10] Self-organized growth of regular nanometer scale InAs dots on GaAs, Appl. Phys. Lett., Volume 64 (1994), pp. 196-198
[11] Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., Volume 93 (1993), pp. 267-300
[12] Semiconductor crystallites-a class of large molecules, Acc. Chem. Res., Volume 23 (1990), pp. 183-188
[13] Absorption and intensity dependent photoluminescence measurements on CdSe quantum dots–assignment of the 1st electronic transition, J. Opt. Soc. Am. B, Volume 10 (1993), pp. 100-107
[14] Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., Volume 72 (1950), pp. 4847-4854
[15] Controlled growth of monodisperse silica spheres in micron size range, J. Coll. Interf. Sci., Volume 26 (1968), p. 62
[16] Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., Volume 115 (1993), pp. 8706-8715
[17] Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals, J. Phys. Chem., Volume 100 (1996), pp. 468-471
[18] Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., Volume 123 (2001), pp. 183-184
[19] Mechanisms of the shape evolution of CdSe nanocrystals, J. Am. Chem. Soc., Volume 123 (2001), pp. 1389-1395
[20] Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., Volume 122 (2000), pp. 12700-12706
[21] Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc., Volume 125 (2003), pp. 12567-12575
[22] Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc., Volume 128 (2006), pp. 12428-12429
[23] Quantum dot bioconjugates for imaging, labelling and sensing, Nature Mat., Volume 4 (2005), pp. 435-446
[24] Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016
[25] Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018
[26] Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, Volume 370 (1994), pp. 354-357
[27] Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, Volume 420 (2002), pp. 800-803
[28] Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films, Semiconductor Nanocrystals and Silicate Nanoparticles, Structure and Bonding, vol. 118, Springer-Verlag, Berlin, 2005, pp. 1-57
[29] Electrochromic nanocrystal quantum dots, Science, Volume 291 (2001), pp. 2390-2392
[30] Hybrid nanorod-polymer solar cells, Science, Volume 295 (2002), pp. 2425-2427
[31] Quantum dot solar cells, Physica E – Low. Dim. Sys. & Nano., Volume 14 (2002), pp. 115-120
[32] Optical gain and stimulated emission in nanocrystal quantum dots, Science, Volume 290 (2000), pp. 314-317
[33] Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B, Volume 106 (2002), pp. 10634-10640
[34] Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands, J. Chem. Phys., Volume 1123 (2005) (074709)
[35] Electronic structure and optical properties of PbS and PbSe quantum dots, J. Opt. Soc. Am. B, Volume 14 (1997), pp. 1632-1646
[36] The electronic structure of semiconductor nanocrystals, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 475-521
[37] The peculiar electronic structure of PbSe quantum dots, Nano Lett., Volume 6 (2006), pp. 2728-2735
[38] Enhancement of exciton exchange interaction by quantum confinement in CdSe nanocrystals, Jap. J. Appl. Phys., Volume 34 (1994) no. Suppl. 34-1, pp. 12-14
[39] Enhancement of electron–hole exchange interaction in CdSe nanocrystals: A quantum confinement effect, Phys. Rev. B, Volume 53 (1996), pp. 1336-1342
[40] Observation of the dark exciton in CdSe quantum dots, Phys. Rev. Lett., Volume 75 (1995), pp. 3278-3731
[41] Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B, Volume 54 (1996), pp. 4843-4856
[42] Frequency dependent spontaneous emission rate from CdSe and CdTe nanocrystals: the influence of dark states, Phys. Rev. Lett., Volume 95 (2005) (236804)
[43] The excitonic exchange splitting and radiative lifetime in PbSe quantum dots, Nano Lett., Volume 7 (2007), pp. 2129-2135
[44] Time-resolved direct observation of Auger recombination in semiconductor-doped glasses, Appl. Phys. Lett., Volume 51 (1987), pp. 1882-1994
[45] Room temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals, Phys. Rev. Lett., Volume 94 (2005) (087403)
[46] Quantization of multiparticle Auger rates in semiconductor quantum dot, Science, Volume 287 (2000), pp. 1011-1013
[47] Pseudopotential theory of Auger processes in CdSe quantum dots, Phys. Rev. Lett., Volume 91 (2003) (056404)
[48] Single-exciton optical gain in semiconductor nanocrystals, Nature, Volume 447 (2007), pp. 441-446
[49] Intrinsic mechanism for the poor luminescence properties of quantum box systems, Phys. Rev. B, Volume 44 (1991), pp. 10945-10948
[50] Femtosecond 1P to 1S electron relaxation in strongly confined semiconductor nanocrystals, Phys. Rev. Lett., Volume 80 (1998), pp. 4028-4031
[51] Breaking the phonon bottleneck in nanometer quantum dots-role of Auger-like processes, Solid. State. Commun., Volume 93 (1995), pp. 281-284
[52] High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett., Volume 92 (2004) (186601)
[53] Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., Volume 6 (2006), pp. 424-429
[54] Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy, Phys. Rev. B, Volume 76 (2007) (081304)
[55] Multiple Exciton generation in semiconductor quantum dots, Chem. Phys. Lett., Volume 457 (2008), pp. 3-11
[56] Photoluminescence of a single semiconductor nanocrystallites by 2-photon excitation spectroscopy, Chem. Phys. Lett., Volume 229 (1994), pp. 317-322
[57] et al. Photoluminescence of single InAs quantum dot obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), pp. 716-719
[58] Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., Volume 77 (1996), pp. 3873-3876
[59] Photoluminescence wandering in single CdSe nanocrystals, Appl. Phys. Lett., Volume 69 (1996), pp. 3905-3907
[60] Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, Volume 383 (1996), pp. 802-804
[61] Quantum-confined stark effect in single CdSe nanocrystallite quantum dots, Science, Volume 278 (1997), pp. 2114-2117
[62] Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett., Volume 78 (1997), pp. 1110-1113
[63] Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy, Phys. Rev. Lett., Volume 100 (2008) (027403)
[64] Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals, Phys. Rev. B, Volume 67 (2003) (201307)
[65] Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior, J. Chem. Phys., Volume 112 (2000), pp. 3117-3120
[66] Power-law intermittency of single emitters, Curr. Op. Coll. Interf. Sci., Volume 12 (2007), pp. 272-284
[67] n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280
[68] PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors, Science, Volume 310 (2005), pp. 86-89
[69] Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films, J. Phys. Chem. B, Volume 107 (2003), pp. 7355-7359
[70] Variable range hopping conduction in semiconductor nanocrystal solids, Phys. Rev. Lett., Volume 92 (2004) (216802)
[71] n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280
[72] Conduction in charged PbSe nanocrystal films, J. Phys Chem. B, Volume 109 (2005), pp. 20192-20199
[73] Time-resolved photoconductivity of PbSe nanocrystal arrays, J. Phys. Chem. B, Volume 110 (2006), pp. 25455-25461
[74] Quantum dot superlattice thermoelectric materials and devices, Science, Volume 297 (2002), pp. 229-2232
[75] Enhanced thermopower in PbSe nanocrystal quantum dot supperlattices, Nano Lett., Volume 8 (2008), pp. 2283-2288
[76] Giant internal magnetic fields in Mn doped nanocrystal quantum dots, Solid. State Commun., Volume 114 (2000), pp. 547-550
[77] High-quality manganese-doped ZnSe nanocrystals, Nano Lett., Volume 1 (2001), pp. 3-7
[78] Doping semiconductor nanocrystals, Nature, Volume 436 (2005), pp. 91-94
[79] Switching-on superparamagnetism in Mn/CdSe quantum dots, J. Am. Chem. Soc., Volume 128 (2006), pp. 2931-2939
[80] Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots, Nano Lett., Volume 8 (2008), pp. 1197-1201
[81] Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter, Phys. Rev. Lett., Volume 87 (2001) (206601)
[82] Towards non-blinking colloidal quantum dots, Nature Mat., Volume 7 (2008), pp. 659-664
Cité par Sources :
Commentaires - Politique