Comptes Rendus
Colloidal quantum dots
[Boîtes quantiques colloidales]
Comptes Rendus. Physique, Volume 9 (2008) no. 8, pp. 777-787.

Cet article est une revue brève des applications et propriétés des boîtes quantiques colloidales, contrastant avec celles des boîtes quantiques obtenues par croissance Stransky–Krastanov.

The applications and physical properties of colloidal quantum dots are briefly reviewed and contrasted with those of Stransky–Krastanov grown quantum dots.

Publié le :
DOI : 10.1016/j.crhy.2008.10.006
Keywords: Quantum dot, Colloid, Nanocrystal, Semiconductor
Mot clés : Boîte quantique, Colloïde, Nanocristal, Semi-conducteur
Philippe Guyot-Sionnest 1

1 James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
@article{CRPHYS_2008__9_8_777_0,
     author = {Philippe Guyot-Sionnest},
     title = {Colloidal quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {777--787},
     publisher = {Elsevier},
     volume = {9},
     number = {8},
     year = {2008},
     doi = {10.1016/j.crhy.2008.10.006},
     language = {en},
}
TY  - JOUR
AU  - Philippe Guyot-Sionnest
TI  - Colloidal quantum dots
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 777
EP  - 787
VL  - 9
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.10.006
LA  - en
ID  - CRPHYS_2008__9_8_777_0
ER  - 
%0 Journal Article
%A Philippe Guyot-Sionnest
%T Colloidal quantum dots
%J Comptes Rendus. Physique
%D 2008
%P 777-787
%V 9
%N 8
%I Elsevier
%R 10.1016/j.crhy.2008.10.006
%G en
%F CRPHYS_2008__9_8_777_0
Philippe Guyot-Sionnest. Colloidal quantum dots. Comptes Rendus. Physique, Volume 9 (2008) no. 8, pp. 777-787. doi : 10.1016/j.crhy.2008.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.006/

[1] C.B. Murray; C.R. Kagan; M.G. Bawendi Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 545-610

[2] C. Burda; X.B. Chen; R. Narayanan; M.A. El-Sayed Chemistry and properties of nanocrystals of different shapes, Chem. Rev., Volume 105 (2005), pp. 1025-1102

[3] L. Esaki; R. Tsu; L.L. Chang; L. Esaki Semiconductor quantum heterostructures, Phys. Today, Volume 14 (1970), p. 61-43

[4] A.I. Ekimov; A.A. Onushchenko Quantum size effect in 3-dimensional microscopic semiconductor crystals, JETP Lett., Volume 34 (1981), pp. 345-349

[5] Al.L. Efros; A.L. Efros Interband absorption of light in a semiconductor sphere, Soviet Phys. Semiconductors–USSR, Volume 16 (1982), pp. 772-775

[6] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941

[7] L.E. Brus A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., Volume 79 (1983), pp. 5566-5571

[8] A. Henglein Chem. Rev., 89 (1989), pp. 1861-1873

[9] D. Leonard; M. Krishnamurthy; C.M. Reaves; S.P. Denbaars; P.M. Petroff Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett., Volume 63 (1993), pp. 3203-3205

[10] J.M. Moison; J. Houzay; F. Barthe; L. Leprince; E. Andre; O. Vatel Self-organized growth of regular nanometer scale InAs dots on GaAs, Appl. Phys. Lett., Volume 64 (1994), pp. 196-198

[11] P.V. Kamat Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., Volume 93 (1993), pp. 267-300

[12] M.L. Steigerwald; L.E. Brus Semiconductor crystallites-a class of large molecules, Acc. Chem. Res., Volume 23 (1990), pp. 183-188

[13] A.I. Ekimov; F. Hache; M.C. Schanne-Klein; D. Ricard; C. Flytzanis; I.A. Kudyavtsev; T.V. Yazeva; A.V. Rodina; A.L. Efros Absorption and intensity dependent photoluminescence measurements on CdSe quantum dots–assignment of the 1st electronic transition, J. Opt. Soc. Am. B, Volume 10 (1993), pp. 100-107

[14] V.K. LaMer; R.H. Dinegar Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., Volume 72 (1950), pp. 4847-4854

[15] W. Stober; A. Fink; E. Bohn Controlled growth of monodisperse silica spheres in micron size range, J. Coll. Interf. Sci., Volume 26 (1968), p. 62

[16] C.B. Murray; D.J. Norris; M.G. Bawendi Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., Volume 115 (1993), pp. 8706-8715

[17] M.A. Hines; P. Guyot-Sionnest Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals, J. Phys. Chem., Volume 100 (1996), pp. 468-471

[18] Z.A. Peng; X.G. Peng Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., Volume 123 (2001), pp. 183-184

[19] Z.A. Peng; X.G. Peng Mechanisms of the shape evolution of CdSe nanocrystals, J. Am. Chem. Soc., Volume 123 (2001), pp. 1389-1395

[20] L. Manna; E.C. Scher; A.P. Alivisatos Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., Volume 122 (2000), pp. 12700-12706

[21] J.J. Li; Y.A. Wang; W.Z. Guo; T.D. Mishima; M.B. Johnson; X.G. Peng Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc., Volume 125 (2003), pp. 12567-12575

[22] Y.A. Yang; O. Chen; A. Angerhofer; C.Y. Cao Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc., Volume 128 (2006), pp. 12428-12429

[23] I.L. Medintz; H.T. Uyeda; E.R. Goldman; H. Mattoussi Quantum dot bioconjugates for imaging, labelling and sensing, Nature Mat., Volume 4 (2005), pp. 435-446

[24] M. Bruchez; M. Moronne; P. Gin; S. Weiss; A.P. Alivisatos Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016

[25] W.C.W. Chan; S.M. Nie Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018

[26] V.L. Colvin; M.C. Schlamp; A.P. Alivisatos Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, Volume 370 (1994), pp. 354-357

[27] S. Coe; W.K. Woo; M. Bawendi; V. Bulovic Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, Volume 420 (2002), pp. 800-803

[28] A.J. Bard; Z.F. Ding; N. Myung Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films, Semiconductor Nanocrystals and Silicate Nanoparticles, Structure and Bonding, vol. 118, Springer-Verlag, Berlin, 2005, pp. 1-57

[29] C.J. Wang; M. Shim; P. Guyot-Sionnest Electrochromic nanocrystal quantum dots, Science, Volume 291 (2001), pp. 2390-2392

[30] W.U. Huynh; J.J. Dittmer; A.P. Alivisatos Hybrid nanorod-polymer solar cells, Science, Volume 295 (2002), pp. 2425-2427

[31] A.J. Nozik Quantum dot solar cells, Physica E – Low. Dim. Sys. & Nano., Volume 14 (2002), pp. 115-120

[32] V.I. Klimov; A.A. Mikhailovsky; S. Xu; A. Malko; J.A. Hollingsworth; C.A. Laetherdale; H.J. Eisler; M.G. Bawendi Optical gain and stimulated emission in nanocrystal quantum dots, Science, Volume 290 (2000), pp. 314-317

[33] B.L. Wehrenberg; C.J. Wang; P. Guyot-Sionnest Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B, Volume 106 (2002), pp. 10634-10640

[34] P. Guyot-Sionnest; B. Wehrenberg; D. Yu Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands, J. Chem. Phys., Volume 1123 (2005) (074709)

[35] I. Kang; F.W. Wise Electronic structure and optical properties of PbS and PbSe quantum dots, J. Opt. Soc. Am. B, Volume 14 (1997), pp. 1632-1646

[36] A.L. Efros; M. Rosen The electronic structure of semiconductor nanocrystals, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 475-521

[37] J.M. An; A. Franceschetti; S.V. Dudiv; A. Zunger The peculiar electronic structure of PbSe quantum dots, Nano Lett., Volume 6 (2006), pp. 2728-2735

[38] M. Chamarro; C. Gourdon; P. Lavallard; A.I. Ekimov Enhancement of exciton exchange interaction by quantum confinement in CdSe nanocrystals, Jap. J. Appl. Phys., Volume 34 (1994) no. Suppl. 34-1, pp. 12-14

[39] M. Chamarro; C. Gourdon; P. Lavallard; O. Lublinskaya; A.I. Ekimov Enhancement of electron–hole exchange interaction in CdSe nanocrystals: A quantum confinement effect, Phys. Rev. B, Volume 53 (1996), pp. 1336-1342

[40] M. Nirmal; D.J. Norris; M. Kuno; M.G. Bawendi; A.L. Efros; M. Rosen Observation of the dark exciton in CdSe quantum dots, Phys. Rev. Lett., Volume 75 (1995), pp. 3278-3731

[41] A.L. Efros; M. Rosen; M. Kuno; M. Nirmal; D.J. Norris; M. Bawendi Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B, Volume 54 (1996), pp. 4843-4856

[42] A.F. van Driel; G. Allan; C. Delerue; P. Lodahl; W.L. Vos; D. Vanmaekelbergh Frequency dependent spontaneous emission rate from CdSe and CdTe nanocrystals: the influence of dark states, Phys. Rev. Lett., Volume 95 (2005) (236804)

[43] J.M. An; A. Franceschetti; A. Zunger The excitonic exchange splitting and radiative lifetime in PbSe quantum dots, Nano Lett., Volume 7 (2007), pp. 2129-2135

[44] P. Roussignol; M. Kull; F. De Rougemont; R. Frey; C. Flytzanis Time-resolved direct observation of Auger recombination in semiconductor-doped glasses, Appl. Phys. Lett., Volume 51 (1987), pp. 1882-1994

[45] B. Fisher; J.M. Caruge; D. Zehnder; M. Bawendi Room temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals, Phys. Rev. Lett., Volume 94 (2005) (087403)

[46] V.I. Klimov; A.A. Mikhailovsky; D.W. McBranch; C.A. Leatherdale; M.G. Bawendi Quantization of multiparticle Auger rates in semiconductor quantum dot, Science, Volume 287 (2000), pp. 1011-1013

[47] L.W. Wang; M. Califano; A. Zunger; A. Franceschetti Pseudopotential theory of Auger processes in CdSe quantum dots, Phys. Rev. Lett., Volume 91 (2003) (056404)

[48] V.I. Klimov; S.A. Ivanov; J. Nanda; M. Achermann; I. Bezel; J.A. McGuire; A. Piryatinski Single-exciton optical gain in semiconductor nanocrystals, Nature, Volume 447 (2007), pp. 441-446

[49] H. Benisty; C.M. Sotomayortorres; C. Weisbuch Intrinsic mechanism for the poor luminescence properties of quantum box systems, Phys. Rev. B, Volume 44 (1991), pp. 10945-10948

[50] V.I. Klimov; D.W. McBranch Femtosecond 1P to 1S electron relaxation in strongly confined semiconductor nanocrystals, Phys. Rev. Lett., Volume 80 (1998), pp. 4028-4031

[51] A.L. Efros; V.A. Kharchenko; M. Rosen Breaking the phonon bottleneck in nanometer quantum dots-role of Auger-like processes, Solid. State. Commun., Volume 93 (1995), pp. 281-284

[52] R.D. Schaller; V.I. Klimov High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett., Volume 92 (2004) (186601)

[53] R.D. Schaller; M. Sykora; J.M. Pietryga; V.I. Klimov Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., Volume 6 (2006), pp. 424-429

[54] G. Nair; M.G. Bawendi Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy, Phys. Rev. B, Volume 76 (2007) (081304)

[55] A.J. Nozik Multiple Exciton generation in semiconductor quantum dots, Chem. Phys. Lett., Volume 457 (2008), pp. 3-11

[56] S.A. Blanton; A. Dehestani; P.C. Lin; P. Guyot-Sionnest Photoluminescence of a single semiconductor nanocrystallites by 2-photon excitation spectroscopy, Chem. Phys. Lett., Volume 229 (1994), pp. 317-322

[57] J.Y. Marzin; J.M. Gerard; A. Izrael et al. Photoluminescence of single InAs quantum dot obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), pp. 716-719

[58] S.A. Empedocles; D.J. Norris; M.G. Bawendi Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., Volume 77 (1996), pp. 3873-3876

[59] S.A. Blanton; M.A. Hines; P. Guyot-Sionnest Photoluminescence wandering in single CdSe nanocrystals, Appl. Phys. Lett., Volume 69 (1996), pp. 3905-3907

[60] M. Nirmal; B.O. Dabbousi; M.G. Bawendi; J.J. Macklin; J.K. Trautman; T.D. Harris; L.E. Brus Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, Volume 383 (1996), pp. 802-804

[61] S.A. Empedocles; M.G. Bawendi Quantum-confined stark effect in single CdSe nanocrystallite quantum dots, Science, Volume 278 (1997), pp. 2114-2117

[62] A.L. Efros; M. Rosen Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett., Volume 78 (1997), pp. 1110-1113

[63] L. Coolen; X. Brockmann; P. Spinicelli; J.P. Hermier Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy, Phys. Rev. Lett., Volume 100 (2008) (027403)

[64] P. Palinginis; S. Tavenner; M. Lonergan; H.L. Wang Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals, Phys. Rev. B, Volume 67 (2003) (201307)

[65] M. Kuno; D.P. Fromm; H.F. Hamann; A. Gallagher; D.J. Nesbitt Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior, J. Chem. Phys., Volume 112 (2000), pp. 3117-3120

[66] F. Cichos; C. von Borczyskowski; M. Orrit Power-law intermittency of single emitters, Curr. Op. Coll. Interf. Sci., Volume 12 (2007), pp. 272-284

[67] D. Yu; C.J. Wang; P. Guyot-Sionnest n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280

[68] D.V. Talapin; C.B. Murray PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors, Science, Volume 310 (2005), pp. 86-89

[69] P. Guyot-Sionnest; C. Wang Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films, J. Phys. Chem. B, Volume 107 (2003), pp. 7355-7359

[70] D. Yu; C.J. Wang; P. Guyot-Sionnest Variable range hopping conduction in semiconductor nanocrystal solids, Phys. Rev. Lett., Volume 92 (2004) (216802)

[71] D. Yu; C.J. Wang; P. Guyot-Sionnest n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280

[72] B.L. Wehrenberg; D. Yu; J.S. Ma; P. Guyot-Sionnest Conduction in charged PbSe nanocrystal films, J. Phys Chem. B, Volume 109 (2005), pp. 20192-20199

[73] J.E. Murphy; M.C. Beard; A.J. Nozik Time-resolved photoconductivity of PbSe nanocrystal arrays, J. Phys. Chem. B, Volume 110 (2006), pp. 25455-25461

[74] T.C. Harman; P.J. Taylor; M.P. Walsh; B.E. LaForge Quantum dot superlattice thermoelectric materials and devices, Science, Volume 297 (2002), pp. 229-2232

[75] R.Y. Wang; J.P. Feser; J.S. Lee; D.V. Talapin; R. Segalman; A. Majumdar Enhanced thermopower in PbSe nanocrystal quantum dot supperlattices, Nano Lett., Volume 8 (2008), pp. 2283-2288

[76] D.M. Hoffman; B.K. Meyer; A.I. Ekimov; I.A. Merkulov; A.L. Efros; M. Rosen; G. Couino; T. Gacoin; J.P. Boilot Giant internal magnetic fields in Mn doped nanocrystal quantum dots, Solid. State Commun., Volume 114 (2000), pp. 547-550

[77] D.J. Norris; N. Yao; F.T. Charnock; T.A. Kennedy High-quality manganese-doped ZnSe nanocrystals, Nano Lett., Volume 1 (2001), pp. 3-7

[78] S.C. Erwin; L.J. Zu; M.I. Haftel; A.L. Efros; T.A. Kennedy; D.J. Norris Doping semiconductor nanocrystals, Nature, Volume 436 (2005), pp. 91-94

[79] D. Magana; S.C. Perera; A.G. Harter; N.S. Dalal; G.F. Strouse Switching-on superparamagnetism in Mn/CdSe quantum dots, J. Am. Chem. Soc., Volume 128 (2006), pp. 2931-2939

[80] R. Beaulac; P.I. Archer; X.Y. Liu; S. Lee; G.M. Salley; M. Dobrowolska; J.K. Furdyna; D.R. Gamelin Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots, Nano Lett., Volume 8 (2008), pp. 1197-1201

[81] A.L. Efros; E.L. Rashba; M. Rosen Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter, Phys. Rev. Lett., Volume 87 (2001) (206601)

[82] B. Mahler; P. Spinelli; S. Buil; X. Quelin; J.P. Hermier; B. Dubertret Towards non-blinking colloidal quantum dots, Nature Mat., Volume 7 (2008), pp. 659-664

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Optical spectroscopy on semiconductor quantum dots in high magnetic fields

Adam Babinski; Marek Potemski; Peter C.M. Christianen

C. R. Phys (2013)


Nanocrystal in dendron-box: a versatile solution to the chemical, photochemical, and thermal instability of colloidal nanocrystals

Wenzhuo Guo; Xiaogang Peng

C. R. Chim (2003)


Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT

Johann Bouclé; Sabina Chyla; Milo S.P. Shaffer; ...

C. R. Phys (2008)