Comptes Rendus
Colloidal quantum dots
[Boîtes quantiques colloidales]
Comptes Rendus. Physique, Recent advances in quantum dot physics / Nouveaux développements dans la physique des boîtes quantiques, Volume 9 (2008) no. 8, pp. 777-787.

Cet article est une revue brève des applications et propriétés des boîtes quantiques colloidales, contrastant avec celles des boîtes quantiques obtenues par croissance Stransky–Krastanov.

The applications and physical properties of colloidal quantum dots are briefly reviewed and contrasted with those of Stransky–Krastanov grown quantum dots.

Publié le :
DOI : 10.1016/j.crhy.2008.10.006
Keywords: Quantum dot, Colloid, Nanocrystal, Semiconductor
Mots-clés : Boîte quantique, Colloïde, Nanocristal, Semi-conducteur

Philippe Guyot-Sionnest 1

1 James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
@article{CRPHYS_2008__9_8_777_0,
     author = {Philippe Guyot-Sionnest},
     title = {Colloidal quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {777--787},
     publisher = {Elsevier},
     volume = {9},
     number = {8},
     year = {2008},
     doi = {10.1016/j.crhy.2008.10.006},
     language = {en},
}
TY  - JOUR
AU  - Philippe Guyot-Sionnest
TI  - Colloidal quantum dots
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 777
EP  - 787
VL  - 9
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.10.006
LA  - en
ID  - CRPHYS_2008__9_8_777_0
ER  - 
%0 Journal Article
%A Philippe Guyot-Sionnest
%T Colloidal quantum dots
%J Comptes Rendus. Physique
%D 2008
%P 777-787
%V 9
%N 8
%I Elsevier
%R 10.1016/j.crhy.2008.10.006
%G en
%F CRPHYS_2008__9_8_777_0
Philippe Guyot-Sionnest. Colloidal quantum dots. Comptes Rendus. Physique, Recent advances in quantum dot physics / Nouveaux développements dans la physique des boîtes quantiques, Volume 9 (2008) no. 8, pp. 777-787. doi : 10.1016/j.crhy.2008.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.006/

[1] C.B. Murray; C.R. Kagan; M.G. Bawendi Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 545-610

[2] C. Burda; X.B. Chen; R. Narayanan; M.A. El-Sayed Chemistry and properties of nanocrystals of different shapes, Chem. Rev., Volume 105 (2005), pp. 1025-1102

[3] L. Esaki; R. Tsu; L.L. Chang; L. Esaki Semiconductor quantum heterostructures, Phys. Today, Volume 14 (1970), p. 61-43

[4] A.I. Ekimov; A.A. Onushchenko Quantum size effect in 3-dimensional microscopic semiconductor crystals, JETP Lett., Volume 34 (1981), pp. 345-349

[5] Al.L. Efros; A.L. Efros Interband absorption of light in a semiconductor sphere, Soviet Phys. Semiconductors–USSR, Volume 16 (1982), pp. 772-775

[6] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941

[7] L.E. Brus A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys., Volume 79 (1983), pp. 5566-5571

[8] A. Henglein Chem. Rev., 89 (1989), pp. 1861-1873

[9] D. Leonard; M. Krishnamurthy; C.M. Reaves; S.P. Denbaars; P.M. Petroff Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett., Volume 63 (1993), pp. 3203-3205

[10] J.M. Moison; J. Houzay; F. Barthe; L. Leprince; E. Andre; O. Vatel Self-organized growth of regular nanometer scale InAs dots on GaAs, Appl. Phys. Lett., Volume 64 (1994), pp. 196-198

[11] P.V. Kamat Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., Volume 93 (1993), pp. 267-300

[12] M.L. Steigerwald; L.E. Brus Semiconductor crystallites-a class of large molecules, Acc. Chem. Res., Volume 23 (1990), pp. 183-188

[13] A.I. Ekimov; F. Hache; M.C. Schanne-Klein; D. Ricard; C. Flytzanis; I.A. Kudyavtsev; T.V. Yazeva; A.V. Rodina; A.L. Efros Absorption and intensity dependent photoluminescence measurements on CdSe quantum dots–assignment of the 1st electronic transition, J. Opt. Soc. Am. B, Volume 10 (1993), pp. 100-107

[14] V.K. LaMer; R.H. Dinegar Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc., Volume 72 (1950), pp. 4847-4854

[15] W. Stober; A. Fink; E. Bohn Controlled growth of monodisperse silica spheres in micron size range, J. Coll. Interf. Sci., Volume 26 (1968), p. 62

[16] C.B. Murray; D.J. Norris; M.G. Bawendi Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc., Volume 115 (1993), pp. 8706-8715

[17] M.A. Hines; P. Guyot-Sionnest Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals, J. Phys. Chem., Volume 100 (1996), pp. 468-471

[18] Z.A. Peng; X.G. Peng Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., Volume 123 (2001), pp. 183-184

[19] Z.A. Peng; X.G. Peng Mechanisms of the shape evolution of CdSe nanocrystals, J. Am. Chem. Soc., Volume 123 (2001), pp. 1389-1395

[20] L. Manna; E.C. Scher; A.P. Alivisatos Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, J. Am. Chem. Soc., Volume 122 (2000), pp. 12700-12706

[21] J.J. Li; Y.A. Wang; W.Z. Guo; T.D. Mishima; M.B. Johnson; X.G. Peng Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, J. Am. Chem. Soc., Volume 125 (2003), pp. 12567-12575

[22] Y.A. Yang; O. Chen; A. Angerhofer; C.Y. Cao Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc., Volume 128 (2006), pp. 12428-12429

[23] I.L. Medintz; H.T. Uyeda; E.R. Goldman; H. Mattoussi Quantum dot bioconjugates for imaging, labelling and sensing, Nature Mat., Volume 4 (2005), pp. 435-446

[24] M. Bruchez; M. Moronne; P. Gin; S. Weiss; A.P. Alivisatos Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016

[25] W.C.W. Chan; S.M. Nie Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018

[26] V.L. Colvin; M.C. Schlamp; A.P. Alivisatos Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature, Volume 370 (1994), pp. 354-357

[27] S. Coe; W.K. Woo; M. Bawendi; V. Bulovic Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, Volume 420 (2002), pp. 800-803

[28] A.J. Bard; Z.F. Ding; N. Myung Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films, Semiconductor Nanocrystals and Silicate Nanoparticles, Structure and Bonding, vol. 118, Springer-Verlag, Berlin, 2005, pp. 1-57

[29] C.J. Wang; M. Shim; P. Guyot-Sionnest Electrochromic nanocrystal quantum dots, Science, Volume 291 (2001), pp. 2390-2392

[30] W.U. Huynh; J.J. Dittmer; A.P. Alivisatos Hybrid nanorod-polymer solar cells, Science, Volume 295 (2002), pp. 2425-2427

[31] A.J. Nozik Quantum dot solar cells, Physica E – Low. Dim. Sys. & Nano., Volume 14 (2002), pp. 115-120

[32] V.I. Klimov; A.A. Mikhailovsky; S. Xu; A. Malko; J.A. Hollingsworth; C.A. Laetherdale; H.J. Eisler; M.G. Bawendi Optical gain and stimulated emission in nanocrystal quantum dots, Science, Volume 290 (2000), pp. 314-317

[33] B.L. Wehrenberg; C.J. Wang; P. Guyot-Sionnest Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B, Volume 106 (2002), pp. 10634-10640

[34] P. Guyot-Sionnest; B. Wehrenberg; D. Yu Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands, J. Chem. Phys., Volume 1123 (2005) (074709)

[35] I. Kang; F.W. Wise Electronic structure and optical properties of PbS and PbSe quantum dots, J. Opt. Soc. Am. B, Volume 14 (1997), pp. 1632-1646

[36] A.L. Efros; M. Rosen The electronic structure of semiconductor nanocrystals, Ann. Rev. Mat. Sci., Volume 30 (2000), pp. 475-521

[37] J.M. An; A. Franceschetti; S.V. Dudiv; A. Zunger The peculiar electronic structure of PbSe quantum dots, Nano Lett., Volume 6 (2006), pp. 2728-2735

[38] M. Chamarro; C. Gourdon; P. Lavallard; A.I. Ekimov Enhancement of exciton exchange interaction by quantum confinement in CdSe nanocrystals, Jap. J. Appl. Phys., Volume 34 (1994) no. Suppl. 34-1, pp. 12-14

[39] M. Chamarro; C. Gourdon; P. Lavallard; O. Lublinskaya; A.I. Ekimov Enhancement of electron–hole exchange interaction in CdSe nanocrystals: A quantum confinement effect, Phys. Rev. B, Volume 53 (1996), pp. 1336-1342

[40] M. Nirmal; D.J. Norris; M. Kuno; M.G. Bawendi; A.L. Efros; M. Rosen Observation of the dark exciton in CdSe quantum dots, Phys. Rev. Lett., Volume 75 (1995), pp. 3278-3731

[41] A.L. Efros; M. Rosen; M. Kuno; M. Nirmal; D.J. Norris; M. Bawendi Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B, Volume 54 (1996), pp. 4843-4856

[42] A.F. van Driel; G. Allan; C. Delerue; P. Lodahl; W.L. Vos; D. Vanmaekelbergh Frequency dependent spontaneous emission rate from CdSe and CdTe nanocrystals: the influence of dark states, Phys. Rev. Lett., Volume 95 (2005) (236804)

[43] J.M. An; A. Franceschetti; A. Zunger The excitonic exchange splitting and radiative lifetime in PbSe quantum dots, Nano Lett., Volume 7 (2007), pp. 2129-2135

[44] P. Roussignol; M. Kull; F. De Rougemont; R. Frey; C. Flytzanis Time-resolved direct observation of Auger recombination in semiconductor-doped glasses, Appl. Phys. Lett., Volume 51 (1987), pp. 1882-1994

[45] B. Fisher; J.M. Caruge; D. Zehnder; M. Bawendi Room temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals, Phys. Rev. Lett., Volume 94 (2005) (087403)

[46] V.I. Klimov; A.A. Mikhailovsky; D.W. McBranch; C.A. Leatherdale; M.G. Bawendi Quantization of multiparticle Auger rates in semiconductor quantum dot, Science, Volume 287 (2000), pp. 1011-1013

[47] L.W. Wang; M. Califano; A. Zunger; A. Franceschetti Pseudopotential theory of Auger processes in CdSe quantum dots, Phys. Rev. Lett., Volume 91 (2003) (056404)

[48] V.I. Klimov; S.A. Ivanov; J. Nanda; M. Achermann; I. Bezel; J.A. McGuire; A. Piryatinski Single-exciton optical gain in semiconductor nanocrystals, Nature, Volume 447 (2007), pp. 441-446

[49] H. Benisty; C.M. Sotomayortorres; C. Weisbuch Intrinsic mechanism for the poor luminescence properties of quantum box systems, Phys. Rev. B, Volume 44 (1991), pp. 10945-10948

[50] V.I. Klimov; D.W. McBranch Femtosecond 1P to 1S electron relaxation in strongly confined semiconductor nanocrystals, Phys. Rev. Lett., Volume 80 (1998), pp. 4028-4031

[51] A.L. Efros; V.A. Kharchenko; M. Rosen Breaking the phonon bottleneck in nanometer quantum dots-role of Auger-like processes, Solid. State. Commun., Volume 93 (1995), pp. 281-284

[52] R.D. Schaller; V.I. Klimov High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion, Phys. Rev. Lett., Volume 92 (2004) (186601)

[53] R.D. Schaller; M. Sykora; J.M. Pietryga; V.I. Klimov Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers, Nano Lett., Volume 6 (2006), pp. 424-429

[54] G. Nair; M.G. Bawendi Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy, Phys. Rev. B, Volume 76 (2007) (081304)

[55] A.J. Nozik Multiple Exciton generation in semiconductor quantum dots, Chem. Phys. Lett., Volume 457 (2008), pp. 3-11

[56] S.A. Blanton; A. Dehestani; P.C. Lin; P. Guyot-Sionnest Photoluminescence of a single semiconductor nanocrystallites by 2-photon excitation spectroscopy, Chem. Phys. Lett., Volume 229 (1994), pp. 317-322

[57] J.Y. Marzin; J.M. Gerard; A. Izrael et al. Photoluminescence of single InAs quantum dot obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), pp. 716-719

[58] S.A. Empedocles; D.J. Norris; M.G. Bawendi Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., Volume 77 (1996), pp. 3873-3876

[59] S.A. Blanton; M.A. Hines; P. Guyot-Sionnest Photoluminescence wandering in single CdSe nanocrystals, Appl. Phys. Lett., Volume 69 (1996), pp. 3905-3907

[60] M. Nirmal; B.O. Dabbousi; M.G. Bawendi; J.J. Macklin; J.K. Trautman; T.D. Harris; L.E. Brus Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, Volume 383 (1996), pp. 802-804

[61] S.A. Empedocles; M.G. Bawendi Quantum-confined stark effect in single CdSe nanocrystallite quantum dots, Science, Volume 278 (1997), pp. 2114-2117

[62] A.L. Efros; M. Rosen Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett., Volume 78 (1997), pp. 1110-1113

[63] L. Coolen; X. Brockmann; P. Spinicelli; J.P. Hermier Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy, Phys. Rev. Lett., Volume 100 (2008) (027403)

[64] P. Palinginis; S. Tavenner; M. Lonergan; H.L. Wang Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals, Phys. Rev. B, Volume 67 (2003) (201307)

[65] M. Kuno; D.P. Fromm; H.F. Hamann; A. Gallagher; D.J. Nesbitt Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior, J. Chem. Phys., Volume 112 (2000), pp. 3117-3120

[66] F. Cichos; C. von Borczyskowski; M. Orrit Power-law intermittency of single emitters, Curr. Op. Coll. Interf. Sci., Volume 12 (2007), pp. 272-284

[67] D. Yu; C.J. Wang; P. Guyot-Sionnest n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280

[68] D.V. Talapin; C.B. Murray PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors, Science, Volume 310 (2005), pp. 86-89

[69] P. Guyot-Sionnest; C. Wang Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films, J. Phys. Chem. B, Volume 107 (2003), pp. 7355-7359

[70] D. Yu; C.J. Wang; P. Guyot-Sionnest Variable range hopping conduction in semiconductor nanocrystal solids, Phys. Rev. Lett., Volume 92 (2004) (216802)

[71] D. Yu; C.J. Wang; P. Guyot-Sionnest n-type conducting CdSe nanocrystal solids, Science, Volume 300 (2003), pp. 1277-1280

[72] B.L. Wehrenberg; D. Yu; J.S. Ma; P. Guyot-Sionnest Conduction in charged PbSe nanocrystal films, J. Phys Chem. B, Volume 109 (2005), pp. 20192-20199

[73] J.E. Murphy; M.C. Beard; A.J. Nozik Time-resolved photoconductivity of PbSe nanocrystal arrays, J. Phys. Chem. B, Volume 110 (2006), pp. 25455-25461

[74] T.C. Harman; P.J. Taylor; M.P. Walsh; B.E. LaForge Quantum dot superlattice thermoelectric materials and devices, Science, Volume 297 (2002), pp. 229-2232

[75] R.Y. Wang; J.P. Feser; J.S. Lee; D.V. Talapin; R. Segalman; A. Majumdar Enhanced thermopower in PbSe nanocrystal quantum dot supperlattices, Nano Lett., Volume 8 (2008), pp. 2283-2288

[76] D.M. Hoffman; B.K. Meyer; A.I. Ekimov; I.A. Merkulov; A.L. Efros; M. Rosen; G. Couino; T. Gacoin; J.P. Boilot Giant internal magnetic fields in Mn doped nanocrystal quantum dots, Solid. State Commun., Volume 114 (2000), pp. 547-550

[77] D.J. Norris; N. Yao; F.T. Charnock; T.A. Kennedy High-quality manganese-doped ZnSe nanocrystals, Nano Lett., Volume 1 (2001), pp. 3-7

[78] S.C. Erwin; L.J. Zu; M.I. Haftel; A.L. Efros; T.A. Kennedy; D.J. Norris Doping semiconductor nanocrystals, Nature, Volume 436 (2005), pp. 91-94

[79] D. Magana; S.C. Perera; A.G. Harter; N.S. Dalal; G.F. Strouse Switching-on superparamagnetism in Mn/CdSe quantum dots, J. Am. Chem. Soc., Volume 128 (2006), pp. 2931-2939

[80] R. Beaulac; P.I. Archer; X.Y. Liu; S. Lee; G.M. Salley; M. Dobrowolska; J.K. Furdyna; D.R. Gamelin Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots, Nano Lett., Volume 8 (2008), pp. 1197-1201

[81] A.L. Efros; E.L. Rashba; M. Rosen Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter, Phys. Rev. Lett., Volume 87 (2001) (206601)

[82] B. Mahler; P. Spinelli; S. Buil; X. Quelin; J.P. Hermier; B. Dubertret Towards non-blinking colloidal quantum dots, Nature Mat., Volume 7 (2008), pp. 659-664

  • Diego Guzmán-De La Cerda; Pedro Pablo Jofré-Ulloa; Eglantina Benavente; Carmen González-Henríquez; Freddy Celis; Juan Rodríguez-Hernández; Enrique Martinez-Campos; Gloria Vera-Rojas; Juan Pablo Melo-Sanguinetti Incorporation of Water-Soluble Quantum Dots and Formation of Wrinkled Patterns on Acrylic and Silicone Elastomers, ACS Omega, Volume 10 (2025) no. 4, p. 3322 | DOI:10.1021/acsomega.4c04071
  • Red Quantum Dot Light‐Emitting Diodes, Colloidal Quantum Dot Light Emitting Diodes (2024), p. 87 | DOI:10.1002/9783527845149.ch4
  • Heinz Kalt; Claus F. Klingshirn Carrier Dynamics in Quantum Dots, Semiconductor Optics 2 (2024), p. 203 | DOI:10.1007/978-3-031-51296-4_8
  • Ines Hernández Celi; Paula T. Peña González; Carlos A. Martínez Bonilla Bacterial nanocellulose and CdTe quantum dots: assembled nanopaper for heavy metal detection in aqueous solution, Journal of Materials Chemistry C, Volume 11 (2023) no. 44, p. 15690 | DOI:10.1039/d3tc02927a
  • T.M.W.J. Bandara; A.A.A.P. Aththanayake; L.B.E. Gunasekara; W.M.C.Y. Wijesundara Applications of quantum dots in energy conversion and storage devices, Quantum Dots (2023), p. 383 | DOI:10.1016/b978-0-323-85278-4.00016-7
  • Vishnu V. Jaiswal; D. Haranath Quantum confinement effects and feasible mechanisms of multicolor emitting afterglow nanophosphors, Quantum Dots (2023), p. 99 | DOI:10.1016/b978-0-323-85278-4.00005-2
  • M. Jaouane; A. Fakkahi; A. Ed-Dahmouny; K. El-Bakkari; A. Turker Tuzemen; R. Arraoui; A. Sali; F. Ungan Modeling and simulation of the influence of quantum dots density on solar cell properties, The European Physical Journal Plus, Volume 138 (2023) no. 2 | DOI:10.1140/epjp/s13360-023-03736-5
  • Yixing Zhao; Tingfang Tian; Zhenwei Zhang; Sen Li; Li Wang Boosting the Synthetic Yield and Stability of CsPbBr3 Nanocrystals via Solvent Injection Quenching for Future Microscale Displays, ACS Applied Nano Materials, Volume 5 (2022) no. 8, p. 11889 | DOI:10.1021/acsanm.2c02874
  • Shanmugapriya V.; Bharathi S.; Esakkinaveen D.; Arunpandiyan S.; Selvakumar B.; Sasikala G.; Jayavel R.; Arivarasan A. Structural, Optical, and Magnetic Properties of Gd Doped CdTe Quantum Dots for Magnetic Imaging Applications, ECS Journal of Solid State Science and Technology, Volume 11 (2022) no. 1, p. 013010 | DOI:10.1149/2162-8777/ac4bad
  • Ahmed I. Abdel-Salam; M.M. Awad; T.S. Soliman; A. Khalid The effect of graphene on structure and optical properties of CdSe nanoparticles for optoelectronic application, Journal of Alloys and Compounds, Volume 898 (2022), p. 162946 | DOI:10.1016/j.jallcom.2021.162946
  • A Allemand; F Kulzer; B Mahler; C Dujardin; J Houel Optical properties of individual CdS/CdSe/CdS nanocrystals: spherical quantum wells as single-photon sources, Nanotechnology, Volume 33 (2022) no. 27, p. 275703 | DOI:10.1088/1361-6528/ac5ee3
  • Rida Jaffar; M.I. Khan; Ghulam M. Mustafa; S.S. Ali; Lamia Ben Farhat; Zainab Mufarreh Elqahtani; Norah Alwadai Structural, optical, dielectric and photovoltaic properties of Sn doped CdS films prepared with green synthesis route, Optical Materials, Volume 133 (2022), p. 112964 | DOI:10.1016/j.optmat.2022.112964
  • Sijia Miao; Yuljae Cho Toward Green Optoelectronics: Environmental-Friendly Colloidal Quantum Dots Photodetectors, Frontiers in Energy Research, Volume 9 (2021) | DOI:10.3389/fenrg.2021.666534
  • Antoni Rogalski Progress in Quantum Dot Infrared Photodetectors, Quantum Dot Photodetectors, Volume 30 (2021), p. 1 | DOI:10.1007/978-3-030-74270-6_1
  • Omar Lopez-Rojas; Jeses Garcia Guzman, 2019 IEEE International Conference on Engineering Veracruz (ICEV) (2019), p. 1 | DOI:10.1109/icev.2019.8920641
  • Çağdaş Allahverdi Kolloidal CdSe Kuantum Noktalarının Sentezi ve Optik Karakterizasyonu, Academic Platform Journal of Engineering and Science, Volume 7 (2019) no. 2, p. 229 | DOI:10.21541/apjes.389919
  • Amrita Dey; Pravin Rathod; Dinesh Kabra Role of Localized States in Photoluminescence Dynamics of High Optical Gain CsPbBr3 Nanocrystals, Advanced Optical Materials, Volume 6 (2018) no. 11 | DOI:10.1002/adom.201800109
  • References, Engineering, Medicine and Science at the Nano-Scale (2018), p. 233 | DOI:10.1002/9783527692903.refs
  • Eka Safitri; Lee Yook Heng; Musa Ahmad; Tan Ling Ling Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots, Sensors and Actuators B: Chemical, Volume 240 (2017), p. 763 | DOI:10.1016/j.snb.2016.08.129
  • Mengxia Liu; F. Pelayo García de Arquer; Yiying Li; Xinzheng Lan; Gi‐Hwan Kim; Oleksandr Voznyy; Lethy Krishnan Jagadamma; Abdullah Saud Abbas; Sjoerd Hoogland; Zhenghong Lu; Jin Young Kim; Aram Amassian; Edward H. Sargent Double‐Sided Junctions Enable High‐Performance Colloidal‐Quantum‐Dot Photovoltaics, Advanced Materials, Volume 28 (2016) no. 21, p. 4142 | DOI:10.1002/adma.201506213
  • Ignazio Roppolo; Marco Sangermano; Alessandro Chiolerio Optical Properties of Polymer Nanocomposites, Functional and Physical Properties of Polymer Nanocomposites (2016), p. 139 | DOI:10.1002/9781118542316.ch7
  • Ali Badawi Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes, Journal of Materials Science: Materials in Electronics, Volume 27 (2016) no. 8, p. 7899 | DOI:10.1007/s10854-016-4781-1
  • Tung Ha Thanh; Vinh Lam Quang; Huynh Thanh Dat Influence of Surface Treatment and Annealing Temperature on the Recombination Processes of the Quantum Dots Solar Cells, Journal of Nanomaterials, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/9806386
  • Lucas C. Flatten; Sotirios Christodoulou; Robin K. Patel; Alexander Buccheri; David M. Coles; Benjamin P. L. Reid; Robert A. Taylor; Iwan Moreels; Jason M. Smith Strong Exciton–Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity, Nano Letters, Volume 16 (2016) no. 11, p. 7137 | DOI:10.1021/acs.nanolett.6b03433
  • Antoine Aubret; Anne Pillonnet; Julien Houel; Christophe Dujardin; Florian Kulzer CdSe/ZnS quantum dots as sensors for the local refractive index, Nanoscale, Volume 8 (2016) no. 4, p. 2317 | DOI:10.1039/c5nr06998j
  • Valerio Adinolfi; Illan J. Kramer; André J. Labelle; Brandon R. Sutherland; S. Hoogland; Edward H. Sargent Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer, ACS Nano, Volume 9 (2015) no. 1, p. 356 | DOI:10.1021/nn5053537
  • Zehua Jin; Peter Owour; Sidong Lei; Liehui Ge Graphene, graphene quantum dots and their applications in optoelectronics, Current Opinion in Colloid Interface Science, Volume 20 (2015) no. 5-6, p. 439 | DOI:10.1016/j.cocis.2015.11.007
  • Huidong Zang; Mihail Cristea; Xuan Shen; Mingzhao Liu; Fernando Camino; Mircea Cotlet Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: indirect evidence for a permanent dipole moment, Nanoscale, Volume 7 (2015) no. 36, p. 14897 | DOI:10.1039/c5nr03714j
  • Ayyaswamy Arivarasan; Ganapathy Sasikala; Ramasamy Jayavel In situ synthesis of CdTe:CdS quantum dot nanocomposites for photovoltaic applications, Materials Science in Semiconductor Processing, Volume 25 (2014), p. 238 | DOI:10.1016/j.mssp.2013.12.018
  • C Lethiec; F Pisanello; L Carbone; A Bramati; L Coolen; A Maître Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-in-rods, New Journal of Physics, Volume 16 (2014) no. 9, p. 093014 | DOI:10.1088/1367-2630/16/9/093014
  • Sean A. Fischer; David B. Lingerfelt; Joseph W. May; Xiaosong Li Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn2+-doped ZnO quantum dots, Physical Chemistry Chemical Physics, Volume 16 (2014) no. 33, p. 17507 | DOI:10.1039/c4cp01683a
  • Alireza Kazemi; Marziyeh Zamiri; Jun Oh Kim; Ted Schuler‐Sandy; Sanjay Krishna Colloidal and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and Comparison, Wiley Encyclopedia of Electrical and Electronics Engineering (2014), p. 1 | DOI:10.1002/047134608x.w8225
  • B. Guilhabert; J. Herrnsdorf; Y. Gao; E. Mutlugun; H.V. Demir; N. Laurand; M. D. Dawson, 2013 IEEE Photonics Conference (2013), p. 240 | DOI:10.1109/ipcon.2013.6656525
  • Ichizo Yagi; Kensuke Mikami; Masayuki Okamura; Kohei Uosaki Ultrafast Dynamics of Photogenerated Electrons in CdS Nanocluster Multilayers Assembled on Solid Substrates: Effects of Assembly and Electrode Potential, ChemPhysChem, Volume 14 (2013) no. 10, p. 2174 | DOI:10.1002/cphc.201300427
  • S. Abdallah; N. Al-Hosiny; Ali Badawi; Christian Brosseau Photoacoustic Study of CdS QDs for Application in Quantum‐Dot‐Sensitized Solar Cells, Journal of Nanomaterials, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/498286
  • Erik H. Hároz; Juan G. Duque; Benjamin Y. Lu; Pavel Nikolaev; Sivaram Arepalli; Robert H. Hauge; Stephen K. Doorn; Junichiro Kono Unique Origin of Colors of Armchair Carbon Nanotubes, Journal of the American Chemical Society, Volume 134 (2012) no. 10, p. 4461 | DOI:10.1021/ja209333m
  • Vasileios Koutsos; John Walker; Emmanouil Glynos Self-Assembly of Colloidal Nanoparticles on Surfaces: Towards Surface Nanopatterning, Nanostructured Materials and Their Applications (2012), p. 191 | DOI:10.1007/978-3-642-22227-6_10
  • A M Brańczyk; D H Mahler; L A Rozema; A Darabi; A M Steinberg; D F V James Self-calibrating quantum state tomography, New Journal of Physics, Volume 14 (2012) no. 8, p. 085003 | DOI:10.1088/1367-2630/14/8/085003
  • Daniel Ratchford; Konrad Dziatkowski; Thomas Hartsfield; Xiaoqin Li; Yan Gao; Zhiyong Tang Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface, Journal of Applied Physics, Volume 109 (2011) no. 10 | DOI:10.1063/1.3587168
  • Weiwei Zheng; Zhenxing Wang; Joshua Wright; Ben Goundie; Naresh S. Dalal; Robert W. Meulenberg; Geoffrey F. Strouse Probing the Local Site Environments in Mn:CdSe Quantum Dots, The Journal of Physical Chemistry C, Volume 115 (2011) no. 47, p. 23305 | DOI:10.1021/jp2082215
  • Bahareh Sadeghimakki; Siva Sivoththaman, 2010 35th IEEE Photovoltaic Specialists Conference (2010), p. 002955 | DOI:10.1109/pvsc.2010.5614495
  • Michal Soreni‐Harari; David Mocatta; Marina Zimin; Yair Gannot; Uri Banin; Nir Tessler Interface Modifications of InAs Quantum‐Dots Solids and their Effects on FET Performance, Advanced Functional Materials, Volume 20 (2010) no. 6, p. 1005 | DOI:10.1002/adfm.200902149
  • Ian Harvey J. Arellano; Joey Mangadlao; Iris Bea Ramiro; Kiall Francis Suazo 3-component low temperature solvothermal synthesis of colloidal cadmium sulfide quantum dots, Materials Letters, Volume 64 (2010) no. 6, p. 785 | DOI:10.1016/j.matlet.2010.01.021
  • Keith A. Abel; Haijun Qiao; Jeff F. Young; Frank C. J. M. van Veggel Four-Fold Enhancement of the Activation Energy for Nonradiative Decay of Excitons in PbSe/CdSe Core/Shell versus PbSe Colloidal Quantum Dots, The Journal of Physical Chemistry Letters, Volume 1 (2010) no. 15, p. 2334 | DOI:10.1021/jz1007565
  • Chun-Yuan Huang; Yan-Kuin Su; Ricky W. Chuang; Ying-Chih Chen; Tsung-Syun Huang; Cheng-Tien Wan Tetrachromatic Hybrid White Light-Emitting Diodes and the Energy Transfer Between Conjugated Polymers and CdSe/ZnS Quantum Dots, Journal of The Electrochemical Society, Volume 156 (2009) no. 8, p. H625 | DOI:10.1149/1.3138462

Cité par 45 documents. Sources : Crossref

Commentaires - Politique