[Communication intra véhicule : caractérisation et simulation de l'environnement électromagnétique]
La plupart des travaux sur les bruits et les sources potentielles d'interférences ont été menés en vue de la protection des communications analogiques et s'avèrent actuellement insuffisants, compte tenu de la généralisation des communications numériques. De nouvelles approches sont en cours de développement et nous avons choisi d'illustrer les démarches actuelles en s'appuyant sur une application particulière qui concerne les transmissions au sein d'un véhicule. Le cas d'une transmission filaire sur le réseau d'énergie, connue sous le nom de courants porteurs en ligne, et celui de liaisons de type sans fil, seront successivement envisagés. Nous nous intéresserons à la caractérisation de l'environnement, du point de vue brouillage électromagnétique, mais nous mettrons également en évidence les potentialités des chambres réverbérantes pour simuler, de façon reproductible, un environnement multi trajets.
Most of the studies on electromagnetic noise and the potential sources of interference were conducted to protect analog communications and have now appeared to be insufficient given the widespread development of digital communications. New approaches appropriate for digital communications are currently under development. We have chosen to illustrate these recent approaches by focusing on the particular application of intra-vehicle transmission. In this article, we consider two examples of data transmission: wire transmissions over a power line network, better known as power line communication, and wireless links inside the vehicle's passenger cell. We focus on characterizing the electromagnetic environment but we also highlight the potential of reverberation chambers for reproducibly simulating multi-path environments.
Mot clés : Communication intra véhicule, Canal de propagation, Communication sur ligne d'énergie, Bruit, Interférence
Fatma Rouissi 1, 2 ; Olivier Delangre 1, 3 ; Virginie Degardin 1 ; Martine Lienard 1 ; Marc Heddebaut 4 ; Virginie Deniau 4 ; Pierre Degauque 1
@article{CRPHYS_2009__10_1_22_0, author = {Fatma Rouissi and Olivier Delangre and Virginie Degardin and Martine Lienard and Marc Heddebaut and Virginie Deniau and Pierre Degauque}, title = {Intra-vehicle digital communications: characterization and simulation of the electromagnetic environment}, journal = {Comptes Rendus. Physique}, pages = {22--30}, publisher = {Elsevier}, volume = {10}, number = {1}, year = {2009}, doi = {10.1016/j.crhy.2008.12.003}, language = {en}, }
TY - JOUR AU - Fatma Rouissi AU - Olivier Delangre AU - Virginie Degardin AU - Martine Lienard AU - Marc Heddebaut AU - Virginie Deniau AU - Pierre Degauque TI - Intra-vehicle digital communications: characterization and simulation of the electromagnetic environment JO - Comptes Rendus. Physique PY - 2009 SP - 22 EP - 30 VL - 10 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2008.12.003 LA - en ID - CRPHYS_2009__10_1_22_0 ER -
%0 Journal Article %A Fatma Rouissi %A Olivier Delangre %A Virginie Degardin %A Martine Lienard %A Marc Heddebaut %A Virginie Deniau %A Pierre Degauque %T Intra-vehicle digital communications: characterization and simulation of the electromagnetic environment %J Comptes Rendus. Physique %D 2009 %P 22-30 %V 10 %N 1 %I Elsevier %R 10.1016/j.crhy.2008.12.003 %G en %F CRPHYS_2009__10_1_22_0
Fatma Rouissi; Olivier Delangre; Virginie Degardin; Martine Lienard; Marc Heddebaut; Virginie Deniau; Pierre Degauque. Intra-vehicle digital communications: characterization and simulation of the electromagnetic environment. Comptes Rendus. Physique, Volume 10 (2009) no. 1, pp. 22-30. doi : 10.1016/j.crhy.2008.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.12.003/
[1] Canonical non-Gaussian noise models: their implications for measurement and for prediction of receiver performance, IEEE Trans. on EMC (1979), pp. 209-220
[2] A possible concept of how present radiated emission standards could be amended in order to protect digital communication service, IEEE Trans. on EMC (2004), pp. 635-640
[3] M. Stecher, Weighting of interference according to its effect on digital communications services, in: IEEE Symp. on EMC, 1998, pp. 69–73
[4] T. Huck, J. Schirmer, T. Hogenmuller, K. Dostert, Tutorial about the implementation of a vehicular high speed communication system, in: IEEE Int. Symp. on PLC and its Applications, ISPLC-2005, pp. 162–166
[5] P.A.J. van Rensburg, H.C. Ferreira, A.J. Snyders, An experimental setup for in-circuit optimization of broadband automotive power-line communications, in: IEEE Int. Symp. on PLC and its Applications, ISPLC-2005, pp. 322–325
[6] W. Schulz, T. Hesse, Channel characteristics of wiring in motor vehicles for power line communications, in: IEEE Int. Symp. on PLC and its Applications, ISPLC-2002, pp. 176–180
[7] Transmission on indoor power lines: From a stochastic channel model to the optimization and performance evaluation of multicarrier systems, Int. J. Commun. Systems, Volume 16 (2003) no. 5, pp. 363-379
[8] Impulsive noise characterization of in-vehicle power line, IEEE Trans. Electromagn. Compat. (2008), pp. 861-868
[9] V. Degardin, P. Laly, M. Lienard, P. Degauque, Impulsive noise on in-vehicle power lines: characterization and impact on communication performance, in: IEEE Int. Symp. on PLC and its Applications, ISPLC-2006, 2006, pp. 222–226
[10] F. Rouissi, V. Degardin, M. Lienard, A. Ghazel, P. Degauque, Broadband indoor PLC: comparison of different models for simulating impulsive noise, in: EMC Europe workshop, Paris, June 14–15, 2007
[11] In-vehicle WLAN radio frequency communication characterization, IEEE Trans. Intelligent Transport Systems (2004), pp. 114-121
[12] O. Delangre, S. Van Roy, P. De Doncker, M. Lienard, P. Degauque, Modelling in-vehicle wide band wíreless channels using reverberation chamber theory, in: IEEE Int. Symp. on Veh. Techno, IEEE/VTC-Fall 2007, 2007, pp. 2149–2153
[13] On the use of reverberation chambers to simulate a controllable rician radio environment for the testing of wireless devices, IEEE Trans. Antennas and Propagation (2006), pp. 3167-3176
[14] Characterization of antennas for mobile and wireless terminals in reverberation chambers: Improved accuracy by platform stirring, Microwave Opt. Technol. Lett. (2001), pp. 386-391
[15] Delay spread and coherence bandwidth in a reverberation chamber, Electron. Lett. (2008), pp. 328-329
[16] Requirements for an effective reverberation chamber: unloaded or loaded, IEEE Trans. Electromagn. Compat. (2006), pp. 187-193
Cité par Sources :
Commentaires - Politique