This work focuses on building a fairly simple yet physically appropriate 1D model for a Reverberation Chamber which claims to be able to analytically predict the statistical behavior of such a chamber, without forsaking to the benefits of deterministic models. The statistical properties are introduced by varying the size of a 1D stirrer or the cavity size itself. A validation analysis shows agreement with other theories and measured results on real RCs. Field statistics in undermoded regime is examined. A radiated emission test is defined and shows reliable matching with reality. The field performance near the conducting walls is investigated.
Cet article décrit l'élaboration d'un modèle unidimensionnel d'une chambre réverbérante permettant la prédiction analytique du comportement statistique d'une telle chambre, sans renoncer aux bénéfices des modèles déterministes. Les propriétés statistiques sont introduites en faisant varier la taille d'un brasseur unidimensionnel ou bien celle de la cavité elle-même. Ce modèle conduit à des résultats conformes à la théorie et aux mesures effectuées en chambres réelles. Les statistiques des champs en régime sous-modal sont étudiées. Une procédure de teste de la radiation émise est définie et les résultats obtenus sont conformes à la réalité. La performance près des parois conductrices est étudiée.
Mots-clés : Statistiques des champs, Chambre Réverbérante, Électromagnétisme statistique
Ramiro Serra 1; Flavio Canavero 1
@article{CRPHYS_2009__10_1_31_0, author = {Ramiro Serra and Flavio Canavero}, title = {Field statistics in a one-dimensional {Reverberation} {Chamber} model}, journal = {Comptes Rendus. Physique}, pages = {31--41}, publisher = {Elsevier}, volume = {10}, number = {1}, year = {2009}, doi = {10.1016/j.crhy.2008.12.005}, language = {en}, }
Ramiro Serra; Flavio Canavero. Field statistics in a one-dimensional Reverberation Chamber model. Comptes Rendus. Physique, New approaches in Electromagnetic Compatibility, Volume 10 (2009) no. 1, pp. 31-41. doi : 10.1016/j.crhy.2008.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.12.005/
[1] Journal of Electromagnetic Waves and Applications, 2 (1998), pp. 339-351
[2] B.H. Liu, et al., Eigenmodes and the composite quality factor of a reverberating chamber, U.S. National Bureau of Standards, Technical note 1066, 1983
[3] Field Theory of Guided Waves, IEEE-Press, New York, 1991
[4] IEEE Transactions on Electromagnetic Compatibility, 40 (1998), pp. 209-217
[5] IEEE Transactions on Electromagnetic Compatibility, 33 (1991), pp. 366-370
[6] EMP Interaction Note, 494 (1993)
[7] D.A. Hill, National Institute of Standards and Technology (NIST), Technical note 1506, 1998
[8] M.L. Crawford, G.H. Koepke, National Bureau of Standards (NBS), Technical note 1092, 1986
[9] Methods of Theoretical Physics, McGraw-Hill, New York, 1953
[10] Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965
[11] Reliability Modelling: A Statistical Approach, CRC Press, London, 1999
[12] IEEE International Symposium on Electromagnetic Compatibility, 1 (1998), pp. 24-27
[13] Design and Analysis of Experiments, John Wiley & Sons, 2004
[14] CISPR/A and IEC SC 77B: IEC 61000-4-21 – Electromagnetic Compatibility (EMC) – Part 4-21: Testing and Measurement Techniques – Reverberation Chamber Test Methods, International Electrotechnical Commission (IEC) International standard, 2003
[15] IEEE Transactions on Electromagnetic Compatibility, 44 (2002), pp. 442-457
[16] et al. Statistical Model of an Undermoded Reverberation Chamber, IEEE Transactions on Electromagnetic Compatibility, Volume 48 (2006), pp. 248-251
Cited by Sources:
Comments - Policy