[Accélération laser d'ions énergétiques de faible émittance et applications]
Les sources d'ions accélérées par laser de forte puissance possèdent des propriétés exceptionnelles, c'est-à-dire une forte luminosité et une forte énergie (56 MeV à l'heure actuelle), elles sont aussi directionnelles et extrêmement laminaires (au moins 100 fois plus que les sources produites par les accélérateurs conventionnels) et ont une très courte durée d'impulsion à la source (ps). De par ces propriétés, ces sources ouvrent de nouvelles possibilités pour les applications des faisceaux d'ions. Parmi celles-ci, nous avons déjà exploré l'utilisation de la radiographie de protons à la physique des plasmas et pour la production de matière dense et chaude. Ces sources pourraient également stimuler le développement d'accélérateurs d'ions compact ou pourraient être utilisées pour des applications médicales. Pour étendre la gamme des applications potentielles, l'énergie des ions ainsi que l'efficacité de conversion laser/ions doit cependant être augmentée. Deux stratégies pour y parvenir en utilisant les lasers actuellement disponibles ont été explorées avec succès dans des expériences réalisées au LULI. Il est également essentiel de contrôler les caractéristiques de ces faisceaux. À cette fin, nous avons développé une micro-lentille plasma déclenchée par laser ultra-rapide et accordable afin de contrôler la divergence du faisceau ainsi que de le sélectionner en énergie.
Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection.
Mots-clés : Laser de puissance, Faisceau d'ions, Faisceau de faible émittance, Radiographie de protons, Matière dense et tiède
Julien Fuchs 1 ; Patrick Audebert 1 ; Marco Borghesi 2 ; Henri Pépin 3 ; Oswald Willi 4
@article{CRPHYS_2009__10_2-3_176_0, author = {Julien Fuchs and Patrick Audebert and Marco Borghesi and Henri P\'epin and Oswald Willi}, title = {Laser acceleration of low emittance, high energy ions and applications}, journal = {Comptes Rendus. Physique}, pages = {176--187}, publisher = {Elsevier}, volume = {10}, number = {2-3}, year = {2009}, doi = {10.1016/j.crhy.2009.03.011}, language = {en}, }
TY - JOUR AU - Julien Fuchs AU - Patrick Audebert AU - Marco Borghesi AU - Henri Pépin AU - Oswald Willi TI - Laser acceleration of low emittance, high energy ions and applications JO - Comptes Rendus. Physique PY - 2009 SP - 176 EP - 187 VL - 10 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2009.03.011 LA - en ID - CRPHYS_2009__10_2-3_176_0 ER -
%0 Journal Article %A Julien Fuchs %A Patrick Audebert %A Marco Borghesi %A Henri Pépin %A Oswald Willi %T Laser acceleration of low emittance, high energy ions and applications %J Comptes Rendus. Physique %D 2009 %P 176-187 %V 10 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2009.03.011 %G en %F CRPHYS_2009__10_2-3_176_0
Julien Fuchs; Patrick Audebert; Marco Borghesi; Henri Pépin; Oswald Willi. Laser acceleration of low emittance, high energy ions and applications. Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 176-187. doi : 10.1016/j.crhy.2009.03.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.011/
[1] et al. Fusion Sci. Technol., 49 (2006), p. 412
[2] et al. Phys. Rev. Lett., 92 (2004), p. 055003
[3] et al. Phys. Rev. Lett., 92 (2004), p. 204801
[4] et al. Phys. Rev. E, 439 (2006), p. 441
[5] et al. Nature, 439 (2006), p. 445
[6] et al. Science, 312 (2006), p. 410
[7] et al. Phys. Rev. Lett., 91 (2003), p. 125004
[8] et al. Rev. Sci. Instrum., 75 (2004), p. 3531
[9] et al. Phys. Rev. Lett., 86 (2001), p. 436
[10] et al. Phys. Plasmas, 1 (1994), p. 1626
[11] Nat. Phys., 48 (2006), p. B267
[12] et al. Phys. Today, 55 (2002) no. 9, p. 34
[13] et al. Phys. Lett. A, 299 (2002), p. 240
[14] et al. Med. Phys., 29 (2002), p. 2788
[15] et al. Appl. Phys. Lett., 78 (2001), p. 19
[16] et al. Phys. Rev. Lett., 84 (2000), p. 670
[17] et al. Phys. Rev. Lett., 85 (2000), p. 2945
[18] et al. Phys. Rev. Lett., 84 (2000), p. 4108
[19] Rev. Modern Phys., 78 (2006), p. 309
[20] et al. Rev. Sci. Instrum., 79 (2008), p. 073301
[21] Med. Phys., 24 (1997), p. 1924
[22] et al. Phys. Plasmas, 7 (2000), p. 2076
[23] et al. Appl. Phys. Lett., 78 (2001), p. 595
[24] et al. Phys. Plasmas, 69 (1992), pp. 3052-3055
[25] et al. Phys. Rev. Lett., 94 (2005), p. 045004
[26] et al. Phys. Rev. Lett., 93 (2004), p. 265004
[27] et al. Phys. Rev. Lett., 93 (2004), p. 045003
[28] et al. Phys. Rev. Lett., 99 (2007), p. 185002
[29] et al. Phys. Fluids, 29 (1986), p. 2679
[30] Phys. Rev. E, 72 (2005), p. 056401
[31] et al. Phys. Rev. Lett., 95 (2005), p. 195001
[32] et al. Phys. Rev. Lett., 91 (2003), p. 255002
[33] et al. Phys. Rev. E, 69 (2004), p. 066414
[34] et al. Phys. Rev. Lett., 97 (2006), p. 205006
[35] et al. Laser Particle Beams, 24 (2006), pp. 163-168
[36] et al. Phys. Rev. E, 76 (2007), p. 065401 (R)
[37] et al. Phys. Rev. Lett., 101 (2008), p. 105004
[38] et al. Nat. Phys., 2 (2006), p. 48
[39] et al. Phys. Rev. ST-AB, 5 (2002), p. 061002
[40] Phys. Plasmas, 11 (2004), p. L17
[41] et al. Med. Phys., 30 (2003), p. 1660
[42] et al. Phys. Rev. Lett., 101 (2008), p. 055004
[43] et al. Phys. Rev. Lett., 92 (2004), p. 175003
[44] et al. Phys. Plasmas, 14 (2007), p. 030701
[45] et al. IEEE Trans. Plasma Sci., 36 (2008), p. 1817
[46] et al. Phys. Plasmas, 15 (2008), p. 053102
[47] S. Buffechoux, et al., submitted for publication (2009)
[48] et al. J. Phys. IV France, 133 (2006), p. 1077
[49] et al. Phys. Rev. B, 71 (2006), p. 165406
[50] et al. C. R. Physique, 10 (2009) no. 2, p. 207
- Design and implementation of the first proton beam transport line in VEGA-3 Petawatt laser system, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-81748-6
- Synchronous post-acceleration of laser-driven protons in helical coil targets by controlling the current dispersion, High Power Laser Science and Engineering, Volume 11 (2023) | DOI:10.1017/hpl.2023.33
- Protons and carbon ions acceleration in the target‐normal‐sheath‐acceleration regime using low‐contrast fs laser and metal‐graphene targets, Contributions to Plasma Physics, Volume 60 (2020) no. 1 | DOI:10.1002/ctpp.201900076
- Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2, Optics Laser Technology, Volume 99 (2018), p. 7 | DOI:10.1016/j.optlastec.2017.09.045
- Laser ablation parameters influencing gold nanoparticle synthesis in water, Radiation Effects and Defects in Solids, Volume 173 (2018) no. 9-10, p. 729 | DOI:10.1080/10420150.2018.1528598
- Design and optimization of a compact laser-driven proton beamline, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-24391-2
- Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-12910-6
- Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-11675-2
- Radiation pressure acceleration: The factors limiting maximum attainable ion energy, Physics of Plasmas, Volume 23 (2016) no. 5 | DOI:10.1063/1.4946025
- Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep21495
- Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation, Physics of Plasmas, Volume 22 (2015) no. 12 | DOI:10.1063/1.4936095
- A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields, Review of Scientific Instruments, Volume 86 (2015) no. 4 | DOI:10.1063/1.4917273
- Proton stopping power measurements using high intensity short pulse lasers produced proton beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 740 (2014), p. 105 | DOI:10.1016/j.nima.2013.11.002
- Summary of the Working Group 2: Ion beams from plasmas, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 740 (2014), p. 81 | DOI:10.1016/j.nima.2014.01.033
- Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly, Physics of Plasmas, Volume 21 (2014) no. 2 | DOI:10.1063/1.4867181
- Monochromatic short pulse laser produced ion beam using a compact passive magnetic device, Review of Scientific Instruments, Volume 85 (2014) no. 4 | DOI:10.1063/1.4870250
- Radiation field characterization and shielding studies for the ELI Beamlines facility, Applied Surface Science, Volume 272 (2013), p. 138 | DOI:10.1016/j.apsusc.2012.09.105
- Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions, EPJ Web of Conferences, Volume 59 (2013), p. 17014 | DOI:10.1051/epjconf/20135917014
- Gabor lenses for capture and energy selection of laser driven ion beams in cancer treatment, Laser and Particle Beams, Volume 31 (2013) no. 4, p. 723 | DOI:10.1017/s0263034613000761
- Plasma expansion into vacuum assuming a steplike electron energy distribution, Physical Review E, Volume 87 (2013) no. 4 | DOI:10.1103/physreve.87.043110
- Investigation of laser ion acceleration in low-density targets using exploded foils, Plasma Physics and Controlled Fusion, Volume 55 (2013) no. 12, p. 124025 | DOI:10.1088/0741-3335/55/12/124025
- Two-stage acceleration of protons from relativistic laser-solid interaction, Physical Review Special Topics - Accelerators and Beams, Volume 15 (2012) no. 10 | DOI:10.1103/physrevstab.15.101301
- Invited Article: Relation between electric and magnetic field structures and their proton-beam images, Review of Scientific Instruments, Volume 83 (2012) no. 10 | DOI:10.1063/1.4750234
- High current, high energy proton beams accelerated by a sub-nanosecond laser, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 653 (2011) no. 1, p. 159 | DOI:10.1016/j.nima.2010.12.118
- Extensive comparison among Target Normal Sheath Acceleration theoretical models, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 653 (2011) no. 1, p. 89 | DOI:10.1016/j.nima.2011.01.100
- 5.5–7.5 MeV Proton Generation by a Moderate-Intensity Ultrashort-Pulse Laser Interaction withH2ONanowire Targets, Physical Review Letters, Volume 106 (2011) no. 13 | DOI:10.1103/physrevlett.106.134801
- Neutron production from ultrashort pulse lasers using linear and circular polarization, Physics of Plasmas, Volume 18 (2011) no. 7 | DOI:10.1063/1.3615033
- Tests of proton laser-acceleration using circular laser polarization, foams and half gas-bag targets, Plasma Physics and Controlled Fusion, Volume 53 (2011) no. 1, p. 014002 | DOI:10.1088/0741-3335/53/1/014002
- Target normal sheath acceleration: theory, comparison with experiments and future perspectives, New Journal of Physics, Volume 12 (2010) no. 4, p. 045012 | DOI:10.1088/1367-2630/12/4/045012
- Optimization of flat-cone targets for enhanced laser-acceleration of protons, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 620 (2010) no. 1, p. 14 | DOI:10.1016/j.nima.2010.01.052
- Picosecond Short-Range Disordering in Isochorically Heated Aluminum at Solid Density, Physical Review Letters, Volume 104 (2010) no. 3 | DOI:10.1103/physrevlett.104.035002
- Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions, Physical Review Letters, Volume 105 (2010) no. 1 | DOI:10.1103/physrevlett.105.015005
- The impact of contaminants on laser-driven light ion acceleration, Physics of Plasmas, Volume 17 (2010) no. 10 | DOI:10.1063/1.3497002
- Optimizing laser-accelerated ion beams for a collimated neutron source, Physics of Plasmas, Volume 17 (2010) no. 11, p. 113105 | DOI:10.1063/1.3497011
- Particle and x-ray generation by irradiation of gaseous and solid targets with a 100 TW laser pulse, Plasma Physics and Controlled Fusion, Volume 51 (2009) no. 12, p. 124049 | DOI:10.1088/0741-3335/51/12/124049
Cité par 35 documents. Sources : Crossref
Commentaires - Politique