[Applications récentes et tendances actuelles dans l'analyse des matériaux du Patrimoine par spectroscopie infrarouge à transformée de Fourier sur installation synchrotron]
La spectroscopie infrarouge par transformée de Fourier sur installation synchrotron (SR-FTIR) est de plus en plus utilisée pour l'analyse d'objets du patrimoine culturel. Cette technique combine les avantages de la spectroscopie FTIR classique (notamment l'identification de groupes moléculaires dans des environnements divers : organique/inorganique, cristallisé/amorphe, solide/liquide/gaz), avec les atouts de l'imagerie chimique (localisation des composantes + un traitement des données facilité grâce aux corrélations géographiques) et les propriétés des faisceaux synchrotrons (en particulier, la brillance qui permet d'obtenir des données de grande qualité, même avec des temps d'acquisition et des tailles de faisceau réduits).
Cette technique peut être appliquée à une majorité de matériaux constitutifs des objets de musée : des matériaux durs, comme les métaux, aux matériaux mous, comme les papiers, en passant par des matériaux hybrides comme les peintures ou les
Cet article aborde quelques aspects fondamentaux de la spectroscopie infrarouge sur source synchrotron. Une revue des applications récentes illustre les potentialités de la technique. Un exemple récent d'étude de peintures bouddhiques de Bamiyan est détaillé. La combinaison de la micro-spectroscopie infrarouge avec d'autres techniques de micro-imagerie sur synchrotron est également soulignée comme une valeur ajoutée de notre approche.
Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size).
This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples.
Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Synchrotron, Infrarouge, IRTF, IR-TF, Héritage culturel, Peinture, Ancien
Marine Cotte 1, 2 ; Paul Dumas 3 ; Yoko Taniguchi 4 ; Emilie Checroun 5 ; Philippe Walter 1 ; Jean Susini 2
@article{CRPHYS_2009__10_7_590_0, author = {Marine Cotte and Paul Dumas and Yoko Taniguchi and Emilie Checroun and Philippe Walter and Jean Susini}, title = {Recent applications and current trends in {Cultural} {Heritage} {Science} using synchrotron-based {Fourier} transform infrared micro-spectroscopy}, journal = {Comptes Rendus. Physique}, pages = {590--600}, publisher = {Elsevier}, volume = {10}, number = {7}, year = {2009}, doi = {10.1016/j.crhy.2009.03.016}, language = {en}, }
TY - JOUR AU - Marine Cotte AU - Paul Dumas AU - Yoko Taniguchi AU - Emilie Checroun AU - Philippe Walter AU - Jean Susini TI - Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy JO - Comptes Rendus. Physique PY - 2009 SP - 590 EP - 600 VL - 10 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2009.03.016 LA - en ID - CRPHYS_2009__10_7_590_0 ER -
%0 Journal Article %A Marine Cotte %A Paul Dumas %A Yoko Taniguchi %A Emilie Checroun %A Philippe Walter %A Jean Susini %T Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy %J Comptes Rendus. Physique %D 2009 %P 590-600 %V 10 %N 7 %I Elsevier %R 10.1016/j.crhy.2009.03.016 %G en %F CRPHYS_2009__10_7_590_0
Marine Cotte; Paul Dumas; Yoko Taniguchi; Emilie Checroun; Philippe Walter; Jean Susini. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. Comptes Rendus. Physique, Physics and heritage, Volume 10 (2009) no. 7, pp. 590-600. doi : 10.1016/j.crhy.2009.03.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.016/
[1] Rev. Sci. Instrum., 66 (1995), p. 1643
[2] J. Macromol. Sci., Part B Phys., 43 (2004), p. 191
[3] J. Macromol. Sci., Part B Phys., 43 (2004), p. 253
[4] Appl. Spectrosc., 52 (1998), p. 1029
[5] Trends Biotechnol., 25 (2007), p. 40
[6] Vib. Spectrosc., 32 (2003), p. 3
[7] J. Biol. Phys., 29 (2003), p. 201
[8] Synchr. Rad. News, 13 (2000), p. 31
[9] Microbeam Anal. Proc. (2000), p. 75
[10] Synchr. Rad. News, 12 (1999), p. 21
[11] IEEE J. Sel. Top. Quantum Electron., 2 (1996), p. 679
[12] Nature, 417 (2002), p. 148
[13] J. Biol. Phys., 24 (2006), p. 217
[14] Appl. Opt., 22 (1983), p. 2914
[15] , Synchrotron Radiation Instrumentation, 10th US National Conference, vol. 417, American Institute of Physics Conference Proceedings, 1997, p. 35
(E. Fontes, ed.)[16] Phys. Rev. Lett., 80 (1998), p. 1220
[17] Spectrochemical Analysis Using Infrared Detectors (I.W.L.R. Bahrgava, ed.), Blackwell Publishing, 2006
[18] Environ. Sci. Technol., 34 (2000), p. 2513
[19] Rev. Sci. Instrum., 72 (2001), p. 1613
[20] Practical Guide to Infrared Microspectroscopy, Marcel Dekker, Inc., New York, 1995 (p. 3)
[21] Curr, Anal. Chem., Volume 2 (2006), p. 89
[22] JAIC, 42 (2003), p. 399
[23] Anal. Chem., 77 (2005), p. 3444
[24] Anal. Chim. Acta, 598 (2007), p. 119
[25] Stud. Conservat., 53 (2008), p. 1
[26] Analyst, 128 (2003), p. 1104
[27] N. Salvado, in: M. Piccollo (Ed.), Proceedings of the Sixth Infrared and Raman Users Group Conference (IRUG6), IFAC, Florence, 2005, p. 296
[28] Appl. Phys. A, 89 (2007), p. 841
[29] Appl. Phys. A, 90 (2008), p. 23
[30] J. Anal. At. Spectrom., 23 (2008), p. 820
[31] Appl. Phys. A, 90 (2008), p. 67
[32] Anal. Chim. Acta, 553 (2005), p. 105
[33] Anal. Chem., 79 (2007), p. 9253
[34] Appl. Phys. A, 92 (2008), p. 77
[35] Vib. Spectrosc., 38 (2005), p. 159
[36] Protecting the World heritage Site of Bamiyan, National Research Institute for Cultural Properties, 2005 (p. 76)
[37] Sci. Conserv., 46 (2007), p. 181 (in Japanese)
[38] Y. Taniguchi, Preprints of the 15th Triennial Meeting of the ICOM Committee for Conservation, New Delhi I (2008) 397
[39] e-PRESERVATIONScience, 6 (2009), p. 1
- Atacamite discolouration under the influence of arsenates in wall paintings in the Kizil Grottoes, Xinjiang, China, Heritage Science, Volume 12 (2024) no. 1 | DOI:10.1186/s40494-024-01406-y
- Organic Materials Used for Giant Buddhas and Wall Paintings in Bamiyan, Afghanistan, Applied Sciences, Volume 12 (2022) no. 19, p. 9476 | DOI:10.3390/app12199476
- ECHO: The ELETTRA Cultural Heritage Office, Handbook of Cultural Heritage Analysis (2022), p. 315 | DOI:10.1007/978-3-030-60016-7_13
- Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects, Science Advances, Volume 8 (2022) no. 9 | DOI:10.1126/sciadv.abl6769
- Deciphering the Chemistry of Cultural Heritage: Targeting Material Properties by Coupling Spectral Imaging with Image Analysis, Accounts of Chemical Research, Volume 54 (2021) no. 13, p. 2823 | DOI:10.1021/acs.accounts.1c00063
- Synchrotron Radiation-Based Micro-XANES and Micro-XRF Study of Unsuccessfully Produced Egyptian Blue from the Late Hellenistic Production Site of Kos (Dodecanese, Greece), Analytical Chemistry, Volume 93 (2021) no. 33, p. 11557 | DOI:10.1021/acs.analchem.1c02063
- Nanoscale Analysis of Historical Paintings by Means of O‐PTIR Spectroscopy: The Identification of the Organic Particles in L′Arlésienne (Portrait of Madame Ginoux) by Van Gogh, Angewandte Chemie, Volume 133 (2021) no. 42, p. 22935 | DOI:10.1002/ange.202106058
- Nanoscale Analysis of Historical Paintings by Means of O‐PTIR Spectroscopy: The Identification of the Organic Particles in L′Arlésienne (Portrait of Madame Ginoux) by Van Gogh, Angewandte Chemie International Edition, Volume 60 (2021) no. 42, p. 22753 | DOI:10.1002/anie.202106058
- Reflection FTIR spectroscopy for the study of historical bowed string instruments: Invasive and non-invasive approaches, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 245 (2021), p. 118926 | DOI:10.1016/j.saa.2020.118926
- A Review of the Applications of Synchrotron Radiation in Archaeological Sciences, Journal of Research on Archaeometry, Volume 6 (2020) no. 1, p. 155 | DOI:10.29252/jra.6.1.155
- IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 1 | DOI:10.1007/978-3-319-04507-8_71-2
- IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 1 | DOI:10.1007/978-3-319-04507-8_71-1
- IR Spectroscopy and Spectromicroscopy with Synchrotron Radiation, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 2059 | DOI:10.1007/978-3-030-23201-6_71
- The Use of a Copper Green Oil Paint in the Interiors of Eidsvoll Manor in Norway: Analysis of a Discoloured Architectural Paint from 1814, Heritage Wood (2019), p. 109 | DOI:10.1007/978-3-030-11054-3_6
- Mineral pigments: the colourful palette of nature, The Contribution of Mineralogy to Cultural Heritage (2019), p. 283 | DOI:10.1180/emu-notes.20.7
- Synchrotron Radiation InfraRed microspectroscopy and imaging in the characterization of archaeological materials and cultural heritage artefacts, The Contribution of Mineralogy to Cultural Heritage (2019), p. 411 | DOI:10.1180/emu-notes.20.12
- Vibrational Spectroscopies, The Encyclopedia of Archaeological Sciences (2018), p. 1 | DOI:10.1002/9781119188230.saseas0594
- Synchrotron‐Based X ‐Ray Analytical Techniques and Materials Analysis, The Encyclopedia of Archaeological Sciences (2018), p. 1 | DOI:10.1002/9781119188230.saseas0565
- Lead soaps in paintings: Friends or foes?, Studies in Conservation, Volume 62 (2017) no. 1, p. 2 | DOI:10.1080/00393630.2016.1232529
- Close to the diffraction limit in high resolution ATR FTIR mapping: demonstration on micrometric multi-layered art systems, The Analyst, Volume 142 (2017) no. 24, p. 4801 | DOI:10.1039/c7an00873b
- Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections, Topics in Current Chemistry, Volume 374 (2016) no. 1 | DOI:10.1007/s41061-015-0003-1
- Metal–Carbonyl Units for Vibrational and Luminescence Imaging: Towards Multimodality, Chemistry – A European Journal, Volume 21 (2015) no. 3, p. 942 | DOI:10.1002/chem.201404600
- Micro infrared spectroscopy discrimination capability of compounds in complex matrices of thin layers in real sample coatings from artworks, Microchemical Journal, Volume 118 (2015), p. 115 | DOI:10.1016/j.microc.2014.09.001
- Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile–butadiene–styrene model samples and historical objects, Analytica Chimica Acta, Volume 843 (2014), p. 59 | DOI:10.1016/j.aca.2014.07.021
- New insights on blue pigments used in 15th century paintings by synchrotron radiation-based micro-FTIR and XRD, Analytical Methods, Volume 6 (2014) no. 11, p. 3610 | DOI:10.1039/c4ay00424h
- Synchrotron Methods: Color in Paints and Minerals, Treatise on Geochemistry (2014), p. 209 | DOI:10.1016/b978-0-08-095975-7.01216-x
- Use of Synchrotron-Based Techniques to Elucidate Metal Uptake and Metabolism in Plants, Volume 119 (2013), p. 1 | DOI:10.1016/b978-0-12-407247-3.00001-9
- Development of innovative embedding procedures for the analyses of paint cross sections in ATR FITR microscopy, Analytical and Bioanalytical Chemistry, Volume 405 (2013) no. 2-3, p. 895 | DOI:10.1007/s00216-012-6435-3
- The Use of Synchrotron Radiation for the Characterization of Artists' Pigments and Paintings, Annual Review of Analytical Chemistry, Volume 6 (2013) no. 1, p. 399 | DOI:10.1146/annurev-anchem-062012-092702
- Ancient materials specificities for their synchrotron examination and insights into their epistemological implications, Journal of Cultural Heritage, Volume 14 (2013) no. 4, p. 277 | DOI:10.1016/j.culher.2012.09.003
- Surface‐enhanced Raman scattering (SERS) and complementary techniques applied for the investigation of an Italian cultural heritage canvas, Journal of Raman Spectroscopy, Volume 44 (2013) no. 2, p. 277 | DOI:10.1002/jrs.4186
- Study of the Early Stages of Mn Intrusion in Corroded Glass by Means of Combined SR FTIR/μXRF Imaging and XANES Spectroscopy, Procedia Chemistry, Volume 8 (2013), p. 239 | DOI:10.1016/j.proche.2013.03.030
- SR-FTIR imaging of the altered cadmium sulfide yellow paints in Henri Matisse's Le Bonheur de vivre (1905–6) – examination of visually distinct degradation regions, The Analyst, Volume 138 (2013) no. 20, p. 6032 | DOI:10.1039/c3an00892d
- Identification and Authentication, Analytical Archaeometry (2012), p. 483 | DOI:10.1039/9781849732741-00481
- Chemical Mapping of Paleontological and Archeological Artifacts with Synchrotron X-Rays, Annual Review of Analytical Chemistry, Volume 5 (2012) no. 1, p. 361 | DOI:10.1146/annurev-anchem-062011-143019
- Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging, Applied Physics A, Volume 106 (2012) no. 2, p. 377 | DOI:10.1007/s00339-011-6686-4
- Simulation and design of an infrared beamline for SESAME (Synchrotron-Light for Experimental Science and Applications in the Middle East), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 673 (2012), p. 73 | DOI:10.1016/j.nima.2011.12.012
- Development and trends in synchrotron studies of ancient and historical materials, Physics Reports, Volume 519 (2012) no. 2, p. 51 | DOI:10.1016/j.physrep.2012.03.003
- Unexpected Materials in a Rembrandt Painting Characterized by High Spatial Resolution Cluster-TOF-SIMS Imaging, Analytical Chemistry, Volume 83 (2011) no. 3, p. 753 | DOI:10.1021/ac1017748
- Synchrotron UV−Visible Multispectral Luminescence Microimaging of Historical Samples, Analytical Chemistry, Volume 83 (2011) no. 5, p. 1737 | DOI:10.1021/ac102986h
- Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy, Analytical and Bioanalytical Chemistry, Volume 399 (2011) no. 9, p. 3025 | DOI:10.1007/s00216-010-4288-1
- SR-XRD and SR-FTIR study of the alteration of silver foils in medieval paintings, Analytical and Bioanalytical Chemistry, Volume 399 (2011) no. 9, p. 3041 | DOI:10.1007/s00216-010-4365-5
- European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials, Journal of Synchrotron Radiation, Volume 18 (2011) no. 5, p. 765 | DOI:10.1107/s090904951102334x
- ChemInform Abstract: Recent Applications and Current Trends in Cultural Heritage Science Using Synchrotron‐Based Fourier Transform Infrared Micro‐spectroscopy, ChemInform, Volume 41 (2010) no. 25 | DOI:10.1002/chin.201025277
- Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy, TrAC Trends in Analytical Chemistry, Volume 29 (2010) no. 6, p. 453 | DOI:10.1016/j.trac.2010.03.002
- Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis, TrAC Trends in Analytical Chemistry, Volume 29 (2010) no. 6, p. 464 | DOI:10.1016/j.trac.2010.03.003
Cité par 46 documents. Sources : Crossref
Commentaires - Politique