[Couleurs physiques et patrimoine culturel : Plasmons de surface dans les verres]
Le verre rubis et les céramiques lustrées sont pratiquement les seuls exemples de couleurs physiques dans le patrimoine culturel. L'effet physique principal à l'origine de leur couleur est l'excitation de modes de plasmons de surface dans des nanoparticules métalliques. Dans les lustres, les interférences dues à une stucture multicouche complexe viennent ajouter un brillant effet d'iridescence. Nous rappelons en détail le principe des plasmons et l'illustrons par le verre rubis. Les céramiques lustrées sont étudiées plus en détail du fait de la complexité des phénomènes impliqués : plasmon, diffusion, interférence entre faisceaux lumineux réfléchis spéculairement, mais aussi entre faisceaux diffusés.
Gold ruby glass and lustre ceramics are the almost unique examples of physical colors in the cultural heritage. The main physical effect at the origin of their color is the excitation of surface plasmon modes in metal nanoparticles. Moreover, in lustre, interference effects due a multilayer structure add a bright iridescence. The principle of plasmons is recalled in detail and applied to Gold ruby glass. The case of luster ceramics is treated in more detail due to the complexity of the effects involved: plasmon, scattering, interference between specular reflected light beams and also between scattered beams.
Mots-clés : Couleur physique, Plasmon de surface, Interférence, Diffusion, Verre rubis, Céramique lustrée, Patrimoine culturel
Jacques Lafait 1 ; Serge Berthier 1 ; Christine Andraud 1 ; Vincent Reillon 1 ; Julie Boulenguez 1
@article{CRPHYS_2009__10_7_649_0, author = {Jacques Lafait and Serge Berthier and Christine Andraud and Vincent Reillon and Julie Boulenguez}, title = {Physical colors in cultural heritage: {Surface} plasmons in glass}, journal = {Comptes Rendus. Physique}, pages = {649--659}, publisher = {Elsevier}, volume = {10}, number = {7}, year = {2009}, doi = {10.1016/j.crhy.2009.08.004}, language = {en}, }
TY - JOUR AU - Jacques Lafait AU - Serge Berthier AU - Christine Andraud AU - Vincent Reillon AU - Julie Boulenguez TI - Physical colors in cultural heritage: Surface plasmons in glass JO - Comptes Rendus. Physique PY - 2009 SP - 649 EP - 659 VL - 10 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2009.08.004 LA - en ID - CRPHYS_2009__10_7_649_0 ER -
%0 Journal Article %A Jacques Lafait %A Serge Berthier %A Christine Andraud %A Vincent Reillon %A Julie Boulenguez %T Physical colors in cultural heritage: Surface plasmons in glass %J Comptes Rendus. Physique %D 2009 %P 649-659 %V 10 %N 7 %I Elsevier %R 10.1016/j.crhy.2009.08.004 %G en %F CRPHYS_2009__10_7_649_0
Jacques Lafait; Serge Berthier; Christine Andraud; Vincent Reillon; Julie Boulenguez. Physical colors in cultural heritage: Surface plasmons in glass. Comptes Rendus. Physique, Physics and heritage, Volume 10 (2009) no. 7, pp. 649-659. doi : 10.1016/j.crhy.2009.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.08.004/
[1] Theory of Colours, Traité des couleurs, MIT Press, Cambridge, MA, 1982 (trans. Charles Lock Eastlake)
[2] Les figures de l'arc-en-ciel, Editions Carré, Paris, 1995
[3] , Editions Hermès-Lavoisier, Paris, 2003 (Collectif Hermès-Lavoisier Les cristaux photoniques ou la lumière en cage)
[4] Iridescences : Les couleurs physiques des Insectes, Iridescences: The Physical Colors of Insects, Springer-Verlag, Paris, France, 2003
[5] La couleur : Lumière, Vision et Matériaux (J. Lafait; M. Elias, eds.), Belin, Paris, 2006
[6] Polaritons de surface dans les nanomatériaux, applications (M. Dupuis, ed.), Nanomatériaux, ARAGO 27, OFTA, Paris, 2001, pp. 125-147
[7] Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., Volume 330 (1908), pp. 377-445
[8] Electromagnetic Theory, McGraw–Hill, New York, 1941
[9] Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998
[10] Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, Volume 203 (1904), pp. 385-420
[11] et al. Optical properties of granular silver and gold films, Phys. Rev. B, Volume 8 (1973), pp. 3689-3701
[12] Optique des milieux composites, Polytechnica, Paris, 1993
[13] La couleur des métaux (J. Lafait; M. Elias, eds.), La couleur : Lumière, Vision et Matériaux, Belin, Paris, 2006, p. 119
[14] Coloration des verres par des nanoparticules métalliques, Verre, Volume 12 (2006), pp. 11-21
[15] et al. The Lycurgus Cup – A Roman nanotechnology, Gold Bull., Volume 40 (2007), pp. 270-277
[16] et al. Gold ruby glass in a new light: On the microstructuring of optical glasses with synchrotron radiation, Gold Bull., Volume 40 (2007), pp. 278-282
[17] et al. The invention of lustre: Iraq 9th and 10th centuries AD, J. Arch. Sci., Volume 35 (2008), pp. 1201-1215
[18] et al. Early Islamic lustre from Egypt, Syria and Iran (10th to 13th century AD), J. Arch. Sci., Volume 35 (2008), pp. 2649-2662
[19] et al. Physico-chemical analyses of Hispano–Moresque lustred ceramic: A precursor for Italian majolica?, Appl. Phys. A, Volume 92 (2007), pp. 11-18
[20] et al. First time observation of Mastro Giorgio masterpieces by means of non-destructive techniques, Appl. Phys. A, Volume 83 (2006), pp. 475-483
[21] Reflets d'or, d'Orient en Occident la céramique lustrée IXe–XVe siècle, cat. de l'exposition du Musée de Cluny, RMN, Paris, 2009
[22] Reduction processes in the formation of lustre glazed ceramics, Thermochim. Acta, Volume 340-341 (1999), pp. 395-405
[23] Metallic nano-particles distribution in lustre glazed ceramic from the 15th century in Seville, Nucl. Instrum. Methods B, Volume 249 (2006), pp. 596-600
[24] et al. Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories, Appl. Phys. A, Volume 83 (2006), pp. 573-579
[25] Modelization of the optical and colorimetric properties of lustred ceramics, Appl. Phys. A, Volume 83 (2006), pp. 257-265
[26] New perspectives for the understanding of the optical properties of middle-age nano-cermets: The lustres, Physica B, Volume 394 (2007), pp. 242-247
[27] V. Reillon, Caractérisation et modélisation des propriétés optiques des ceramiques lustrées, PhD thesis, Université Pierre et Marie Curie – Paris 6, Paris, 2008, http://tel.archives-ouvertes.fr/tel-00374766/fr/
- Introduction to nanotechnology, Handbook of Nanomaterials, Volume 1 (2024), p. 1 | DOI:10.1016/b978-0-323-95511-9.00012-3
- History of Undefined Use of Nanotechnology by Universe to Defined Concept of Nanotechnology by Human, Reference Module in Materials Science and Materials Engineering (2024) | DOI:10.1016/b978-0-323-95486-0.00098-3
- Glaçures et verres noirs du patrimoine : recettes et savoir-faire, Technè, Volume 55 (2023), p. 75 | DOI:10.4000/techne.17464
- Three Millennia of Nanocrystals, ACS Nano, Volume 16 (2022) no. 4, p. 5085 | DOI:10.1021/acsnano.1c11159
- Comparative Investigation of Red and Orange Roman Tesserae: Role of Cu and Pb in Colour Formation, Heritage, Volume 5 (2022) no. 3, p. 2628 | DOI:10.3390/heritage5030137
- Nanoscale engineering of gold particles in 18th century Böttger lusters and glazes, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 18 | DOI:10.1073/pnas.2120753119
- Les couleurs des verres, Reflets de la physique (2022) no. 74, p. 64 | DOI:10.1051/refdp/202274064
- Study of the influence of crystalline phases on optical characteristics of a glass-ceramic in the visible range via simulations by the four-flux method, Journal of Non-Crystalline Solids, Volume 551 (2021), p. 120446 | DOI:10.1016/j.jnoncrysol.2020.120446
- Other applications, Metal Oxide Glass Nanocomposites (2020), p. 279 | DOI:10.1016/b978-0-12-817458-6.00017-2
- Surface-Based Nanoplasmonic Sensors for Biointerfacial Science Applications, Bulletin of the Chemical Society of Japan, Volume 92 (2019) no. 8, p. 1404 | DOI:10.1246/bcsj.20190112
- Did Nanotechnology Flourish During the Roman Empire and Medieval Periods?, History of Nanotechnology (2019), p. 113 | DOI:10.1002/9781119460534.ch6
- Nanoeffects in Ancient Technology and Art and in Space, Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines (2018), p. 497 | DOI:10.1016/b978-0-323-48057-4.00016-5
- Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses, Analytical Chemistry, Volume 89 (2017) no. 11, p. 6277 | DOI:10.1021/acs.analchem.7b01452
- Production of luster glaze on opal tableware using zarinfam technique and characterization of its structure and color, Applied Physics A, Volume 122 (2016) no. 5 | DOI:10.1007/s00339-016-0012-0
- Fundamentals of Glass and Glass Nanocomposites, Glass Nanocomposites (2016), p. 3 | DOI:10.1016/b978-0-323-39309-6.00001-8
- Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics, Journal of Modern Optics, Volume 63 (2016) no. sup3, p. S1 | DOI:10.1080/09500340.2016.1143534
- Optics in Nanotechnology, Optics in Our Time (2016), p. 223 | DOI:10.1007/978-3-319-31903-2_10
- Lycurgus Cup: inverse problem using photographs for characterization of matter, Journal of the Optical Society of America A, Volume 32 (2015) no. 8, p. 1544 | DOI:10.1364/josaa.32.001544
- Dichroic colored luster of laser-induced silver nanoparticle gratings buried in dense inorganic films, Journal of the Optical Society of America B, Volume 31 (2014) no. 11, p. C1 | DOI:10.1364/josab.31.0000c1
- Survey of Plasmonic Nanoparticles: From Synthesis to Application, Particle Particle Systems Characterization, Volume 31 (2014) no. 7, p. 721 | DOI:10.1002/ppsc.201300309
- Discovering Vanished Paints and Naturally Formed Gold Nanoparticles on 2800 Years Old Phoenician Ivories Using SR-FF-MicroXRF with the Color X-ray Camera, Analytical Chemistry, Volume 85 (2013) no. 12, p. 5857 | DOI:10.1021/ac4006167
- Enhanced Optical Biosensors Based on Nanoplasmonics, Bio‐Nanotechnology (2013), p. 252 | DOI:10.1002/9781118451915.ch14
- Control of selective silicate glass coloration by gold metallic nanoparticles: structural investigation, growth mechanisms, and plasmon resonance modelization, Gold Bulletin, Volume 46 (2013) no. 4, p. 243 | DOI:10.1007/s13404-013-0121-x
- Chemical Analysis with High Spatial Resolution by Rutherford Backscattering and Raman Confocal Spectroscopies: Surface Hierarchically Structured Glasses, Journal of the American Ceramic Society, Volume 96 (2013) no. 6, p. 1783 | DOI:10.1111/jace.12397
- Characteristics of HgS nanoparticles formed in hair by a chemical reaction, Philosophical Magazine, Volume 93 (2013) no. 1-3, p. 137 | DOI:10.1080/14786435.2012.674225
- Refractive index investigation of poly(vinyl alcohol) films with TiO2 nanoparticle inclusions, Applied Optics, Volume 51 (2012) no. 32, p. 7771 | DOI:10.1364/ao.51.007771
- Copper red glazes: a coating with two families of particles, Applied Physics A, Volume 106 (2012) no. 4, p. 915 | DOI:10.1007/s00339-011-6707-3
- Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration, Dyes and Pigments, Volume 94 (2012) no. 2, p. 355 | DOI:10.1016/j.dyepig.2012.01.006
- XAS study on copper red in ancient glass beads from Thailand, Analytical and Bioanalytical Chemistry, Volume 399 (2011) no. 9, p. 3033 | DOI:10.1007/s00216-010-4219-1
- THE EVOLUTION OF LUSTRE CERAMICS FROM MANISES (VALENCIA, SPAIN) BETWEEN THE 14TH AND 18TH CENTURIES, Archaeometry, Volume 53 (2011) no. 3, p. 490 | DOI:10.1111/j.1475-4754.2010.00552.x
- One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites, Journal of Alloys and Compounds, Volume 509 (2011) no. 15, p. 4999 | DOI:10.1016/j.jallcom.2011.01.208
Cité par 31 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier