[Propriétés mécaniques du bois de Hinoki ancien provenant de bâtiments historiques japonais]
Le bois est present dans de nombreux objets du patrimoine en bois du Japon du fait de sa capacité à résister sur de longues durées. Toutefois, l'évolution de ses propriétés en usage demeure insuffisamment connue. La présente étude sur l'effet du vieillissement du bois tire parti du contexte japonais où les traditions constructives ont été maintenues depuis des siècles. Les essais de flexion 3 points ont été réalisés dans les directions longitudinale (L) et radiale (R) sur de petits échantillons de bois issus de 8 prélèvements historiques et d'une référence moderne considérée de la meilleure qualité par des restaurateurs. Bien que le bois âgé semble plus rigide et plus résistant que le bois récent, après correction sur la densité et l'humidité d'équilibre aucune variation significative de rigidité L et R, ni de résistance L n'est observée. Le comportement post-linéaire est par contre fortement influencé par l'âge du bois surtout dans la direction R où résistance et énergie de rupture décroissent fortement avec l'âge du bois, compté depuis l'âge d'abattage estimé. Le bois âgé en bon état de conservation peut être considéré comme sûr tant qu'il n'est pas sollicité perpendiculairement aux fibres.
Wood is present in many cultural heritage objects in Japan thanks to its capacity to resist over a long period of time. However, the evolution of its properties in regular use remains insufficiently known. The present study on the effect of wood aging takes advantage of the Japanese context where building traditions have been maintained for centuries. 3-point bending tests were performed in longitudinal (L) and radial (R) directions on small clear wood specimens cut from 8 historical samples and one modern reference considered of high quality by craftsmen. Although aged wood appeared more rigid and stronger than recent wood, after density and humidity corrections were applied no significant variation of L and R rigidity or L strength was observed. The post-linear behaviour, however, was drastically influenced by wood age especially in R direction where the strength and rupture energy decreased markedly with the time elapsed since the wood was processed. Well preserved aged wood considered as safe as long as it is not loaded perpendicular to grain.
Mots-clés : Bois âgé, Hinoki (Chamaecydeparis obtusa), Horyu-ji, Propriétés mécaniques, Masse volumique
Misao Yokoyama 1 ; Joseph Gril 1, 2 ; Miyuki Matsuo 1 ; Hiroyuki Yano 1 ; Junji Sugiyama 1 ; Bruno Clair 2 ; Sigeru Kubodera 3 ; Takumi Mistutani 3 ; Minoru Sakamoto 4 ; Hiromasa Ozaki 4 ; Mineo Imamura 4 ; Shuichi Kawai 1
@article{CRPHYS_2009__10_7_601_0, author = {Misao Yokoyama and Joseph Gril and Miyuki Matsuo and Hiroyuki Yano and Junji Sugiyama and Bruno Clair and Sigeru Kubodera and Takumi Mistutani and Minoru Sakamoto and Hiromasa Ozaki and Mineo Imamura and Shuichi Kawai}, title = {Mechanical characteristics of aged {Hinoki} wood from {Japanese} historical buildings}, journal = {Comptes Rendus. Physique}, pages = {601--611}, publisher = {Elsevier}, volume = {10}, number = {7}, year = {2009}, doi = {10.1016/j.crhy.2009.08.009}, language = {en}, }
TY - JOUR AU - Misao Yokoyama AU - Joseph Gril AU - Miyuki Matsuo AU - Hiroyuki Yano AU - Junji Sugiyama AU - Bruno Clair AU - Sigeru Kubodera AU - Takumi Mistutani AU - Minoru Sakamoto AU - Hiromasa Ozaki AU - Mineo Imamura AU - Shuichi Kawai TI - Mechanical characteristics of aged Hinoki wood from Japanese historical buildings JO - Comptes Rendus. Physique PY - 2009 SP - 601 EP - 611 VL - 10 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2009.08.009 LA - en ID - CRPHYS_2009__10_7_601_0 ER -
%0 Journal Article %A Misao Yokoyama %A Joseph Gril %A Miyuki Matsuo %A Hiroyuki Yano %A Junji Sugiyama %A Bruno Clair %A Sigeru Kubodera %A Takumi Mistutani %A Minoru Sakamoto %A Hiromasa Ozaki %A Mineo Imamura %A Shuichi Kawai %T Mechanical characteristics of aged Hinoki wood from Japanese historical buildings %J Comptes Rendus. Physique %D 2009 %P 601-611 %V 10 %N 7 %I Elsevier %R 10.1016/j.crhy.2009.08.009 %G en %F CRPHYS_2009__10_7_601_0
Misao Yokoyama; Joseph Gril; Miyuki Matsuo; Hiroyuki Yano; Junji Sugiyama; Bruno Clair; Sigeru Kubodera; Takumi Mistutani; Minoru Sakamoto; Hiromasa Ozaki; Mineo Imamura; Shuichi Kawai. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings. Comptes Rendus. Physique, Physics and heritage, Volume 10 (2009) no. 7, pp. 601-611. doi : 10.1016/j.crhy.2009.08.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.08.009/
[1] Aging and fossilization of wood and its components, Wood Sci. Technol., Volume 25 (1991), pp. 153-177
[2] J. Kohara, Study on the old timber, Research Report of the Faculty of Engineering, Chiba University 9 (15) (1958) 1–55 (in Japanese)
[3] Dendrochronology in Japan, Dohosya Press, Nara, 1990 Bulletin 48 (in Japanese)
[4] et al. Radiocarbon wiggle-matching of Japanese historical materials with a possible systematic age offset, Radiocarbon, Volume 49 (2007) no. 2, pp. 331-337
[5] M. Matsuo, et al., Evaluation of the aging wood from historical buildings as compared with the accelerated aging wood, analysis of colour properties (2009), submitted for publication
[6] Theory of X-ray measurement of microfibril angle in wood, For. Prod. J., Volume 16 (1966) no. 10, pp. 37-42
[7] et al. Method of determining the mean microfibril angle of wood over a wide range by the improved Cave's method, Mokuzai Gakkaishi, Volume 39 (1993) no. 4, pp. 375-381
[8] Mokuzai Kogyou Handbook, Maruzen Press, 2004 (in Japanese)
[9] et al. Mokuzai riyou-no kagaku, Kyoritsu Press, 1983 p. 38 (in Japanese)
[10] Predicting the effect of specific gravity, moisture content, temperature and strain rate on the elastic properties of softwood, Wood Sci. Technol., Volume 7 (1973), pp. 127-141
[11] Mécanique du Matériau Bois et Composites, Cépaduès-Editions, Toulouse, France, 1987
[12] Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects, Wood Fiber, Volume 14 (1982) no. 1, pp. 4-36
[13] Studies on rheological properties of wood and structure of cell wall, Mokuzai Gakkaishi, Volume 17 (1971) no. 2, pp. 36-43 (in Japanese)
[14] et al. Studies on rheological properties of wood II – Effect of heat treating condition on the hygroscopicity and dynamic Young's modulus of wood, Mokuzai Gakkaishi (1962), pp. 29-33 (in Japanese)
[15] et al. Young's modulus of cell wall in soft wood, Nihon Reol. Gakkaishi, Volume 9 (1981) no. 4, pp. 169-175 (in Japanese)
[16] On the mechanical properties of Japanese Hinoki-wood, Mokuzai Gakkaishi, Volume 8 (1962) no. 1, pp. 7-12 (in Japanese)
[17] Cellular Solids, Structure and Properties, Cambridge University Press, 1997
[18] et al. Wood Structure, Buneido Press, 1985 p. 29 (in Japanese)
[19] Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining – Micromechanics and fracture, Holzforschung, Volume 63 (2009) no. 2, pp. 121-129
[20] Study on the old timber – Changes in chemical component, Mokuzai Gakkaishi, Volume 2 (1956) no. 5, pp. 191-195
[21] W. Ragil, et al., Evaluation of aged wood from historical Japanese buildings II – Changes in chemical component, in: Proceedings of the 57th Annual Meeting of the Japanese Wood Research Society, 2007
[22] M. Yokoyama, et al., Evaluation of aged wood from historical Japanese buildings I – Changes in mechanical properties of Hinoki wood, in: Proceedings of the 57th Annual Meeting of the Japanese Wood Research Society, 2007
[23] et al. Fourier transform infrared spectroscopic analysis of the degradation of structural lumber in Horyu-ji temple, Mokuzai Gakkaishi, Volume 43 (1997) no. 3, pp. 285-294 (in Japanese)
[24] Near-infrared spectroscopic comparison of antique and modern wood, Appl. Spectrosc., Volume 57 (2008) no. 11, pp. 1451-1453
[25] et al. The effect of aging on the ultrastructure of wood, Wood Sci. Technol., Volume 9 (1975), pp. 87-98
[26] Study on the old timber – Increasement in Young's modulus of heat-treated wood, Mokuzai Gakkaishi, Volume 1 (1955) no. 2, pp. 80-84 (in Japanese)
[27] M. Matsuo, et al., Colour changes in wood during heating: Kinetic analysis by applying time–temperature superposition method (2009), in preparation
- Archaeologic Wood, Wood of Historic Artefacts and Building Structures, Acoustics of Wood (2025), p. 885 | DOI:10.1007/978-3-662-70209-3_27
- Mechanical properties of ancient wood structural elements assessed by visual and machine strength grading, Construction and Building Materials, Volume 411 (2024), p. 134418 | DOI:10.1016/j.conbuildmat.2023.134418
- Mechanical Properties of Wooden Structural Members from a Historical Japanese Temple Under Renovation – and the Effects of Cross-Sectional Voids and Aging, International Journal of Architectural Heritage (2024), p. 1 | DOI:10.1080/15583058.2024.2432340
- Influence of wood species and natural aging on the mechanics properties and microstructure of wood, Journal of Building Engineering, Volume 91 (2024), p. 109469 | DOI:10.1016/j.jobe.2024.109469
- A Review of the Applicability of Non-destructive Testing for the Determination of the Fire Performance of Reused Structural Timber, Journal of Nondestructive Evaluation, Volume 43 (2024) no. 4 | DOI:10.1007/s10921-024-01120-6
- Vibroacoustic properties as a function of crystallinity changes in heat-treated Pinus radiata D. Don wood, Wood Material Science Engineering, Volume 19 (2024) no. 1, p. 247 | DOI:10.1080/17480272.2023.2236960
- Synchrotron X-ray measurements of cellulose in the cell wall of aged wood under uniaxial loading, Holzforschung, Volume 77 (2023) no. 4, p. 260 | DOI:10.1515/hf-2022-0127
- Study on seismic performance of base-isolated and base-fixed Ancient timber buildings in hanging-wall/footwall Earthquakes, Journal of Asian Architecture and Building Engineering, Volume 22 (2023) no. 2, p. 374 | DOI:10.1080/13467581.2022.2045999
- Automated construction for human–robot interaction in wooden buildings: Integrated robotic construction and digital design of iSMART wooden arches, Journal of Field Robotics, Volume 40 (2023) no. 4, p. 810 | DOI:10.1002/rob.22154
- Detecting the changes of wood properties with respect to elapsed years since wood formation by the eigenvalue distribution of near infrared spectral matrices, Journal of Wood Science, Volume 69 (2023) no. 1 | DOI:10.1186/s10086-023-02078-1
- Material properties of Japanese and western wooden nails, Materialia, Volume 28 (2023), p. 101717 | DOI:10.1016/j.mtla.2023.101717
- Physical Properties of Wood and Wood-Based Materials, Springer Handbook of Wood Science and Technology (2023), p. 281 | DOI:10.1007/978-3-030-81315-4_6
- Compressive Strength of Aged Timber Members in Traditional Building: Considering Differences in Heartwood and Sapwood, Applied Sciences, Volume 12 (2022) no. 15, p. 7719 | DOI:10.3390/app12157719
- Moisture transport dynamics in wood during drying studied by long-wave near-infrared hyperspectral imaging, Cellulose, Volume 29 (2022) no. 1, p. 133 | DOI:10.1007/s10570-021-04290-y
- Evaluation of the mechanical contribution of wood degraded by insects in old timber beams through analytical calculations and experimental tests, Construction and Building Materials, Volume 339 (2022), p. 127653 | DOI:10.1016/j.conbuildmat.2022.127653
- Effects of natural ageing on macroscopic physical and mechanical properties, chemical components and microscopic cell wall structure of ancient timber members, Construction and Building Materials, Volume 359 (2022), p. 129476 | DOI:10.1016/j.conbuildmat.2022.129476
- Effects of cyclic drying and moistening on the mechanical and physical properties of wood, European Journal of Wood and Wood Products, Volume 80 (2022) no. 6, p. 1333 | DOI:10.1007/s00107-022-01847-x
- Energetic Investigation of Aging Effect on Mechanical Behavior in Wood by Means of XRD Measurement, International Journal of Architectural Heritage, Volume 16 (2022) no. 1, p. 1 | DOI:10.1080/15583058.2020.1743793
- Vpliv naravnega staranja na izbrane fizikalne in mehanske lastnosti konstrukcijskega lesa, Les/Wood, Volume 71 (2022) no. 2, p. 45 | DOI:10.26614/les-wood.2022.v71n02a05
- Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization, Frontiers in Chemistry, Volume 9 (2021) | DOI:10.3389/fchem.2021.682883
- Evaluation of Old and Historic Buildings Subjected to Fire, Journal of Architectural Engineering, Volume 27 (2021) no. 2 | DOI:10.1061/(asce)ae.1943-5568.0000456
- Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland, Materials, Volume 14 (2021) no. 24, p. 7632 | DOI:10.3390/ma14247632
- The Effects of Iron Rust on the Ageing of Woods and Their Derived Pulp Paper, Polymers, Volume 13 (2021) no. 20, p. 3483 | DOI:10.3390/polym13203483
- In Situ Observations on the Crack Morphology in the Ancient Timber Beams, Sustainability, Volume 13 (2021) no. 1, p. 439 | DOI:10.3390/su13010439
- Effects of water-soluble extractives on the moisture sorption properties of spruce wood hygrothermally treated at 120°C and different humidity levels, Wood Material Science Engineering, Volume 16 (2021) no. 2, p. 124 | DOI:10.1080/17480272.2019.1635642
- Kestane Ahşap Elemanlarının Yüzey Özellikleri Üzerine Doğal Yaşlanmanın Etkisi, Journal of Anatolian Environmental and Animal Sciences, Volume 5 (2020) no. 4, p. 563 | DOI:10.35229/jaes.793469
- Strength of aged wood in old constructions, Journal of Applied Engineering Science, Volume 18 (2020) no. 1, p. 114 | DOI:10.5937/jaes18-23002
- Experimental and Numerical Investigation on Seismic Performance of One-Way Straight Mortise–Tenon Joints Based on a Novel Method to Simulate Damage of Deteriorated Ancient Chinese Timber Buildings, Journal of Performance of Constructed Facilities, Volume 34 (2020) no. 2 | DOI:10.1061/(asce)cf.1943-5509.0001390
- Going beyond Good Intentions for the Sustainable Conservation of Built Heritage: A Systematic Literature Review, Sustainability, Volume 12 (2020) no. 22, p. 9649 | DOI:10.3390/su12229649
- Effects of seasoning on the vibrational properties of wood for the soundboards of string instruments, The Journal of the Acoustical Society of America, Volume 147 (2020) no. 2, p. 998 | DOI:10.1121/10.0000723
- The effects of transition metal sulfates on cellulose crystallinity during accelerated ageing of silver fir wood, Cellulose, Volume 26 (2019) no. 4, p. 2625 | DOI:10.1007/s10570-018-2210-8
- Application of time–temperature–humidity superposition to the mass loss of wood through hygrothermally accelerated ageing at 95–140 °C and different relative humidity levels, SN Applied Sciences, Volume 1 (2019) no. 1 | DOI:10.1007/s42452-018-0009-8
- Changes in vibrational properties and colour of spruce wood by hygrothermally accelerated ageing at 95–140 °C and different relative humidity levels, SN Applied Sciences, Volume 1 (2019) no. 1 | DOI:10.1007/s42452-018-0004-0
- Effects of water-soluble extractives on the vibrational properties and color of hygrothermally treated spruce wood, Wood Science and Technology, Volume 53 (2019) no. 1, p. 151 | DOI:10.1007/s00226-018-1069-z
- Mechanical and physical properties of Cunninghamia lanceolata wood decayed by brown rot, iForest - Biogeosciences and Forestry, Volume 12 (2019) no. 3, p. 317 | DOI:10.3832/ifor2922-012
- Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments, Journal of Cultural Heritage, Volume 27 (2017), p. S63 | DOI:10.1016/j.culher.2016.02.011
- Numerical modelling of wooden structures, Journal of Cultural Heritage, Volume 27 (2017), p. S93 | DOI:10.1016/j.culher.2015.09.008
- Chemical distinctions between Stradivari’s maple and modern tonewood, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 1, p. 27 | DOI:10.1073/pnas.1611253114
- Shear modulus of old timber, iForest - Biogeosciences and Forestry, Volume 10 (2017) no. 2, p. 446 | DOI:10.3832/ifor1787-009
- STRENGTH CHARACTERISTICS OF OLD TRADITIONAL FOLK HOUSE STRUCTURAL TIMBERS IN HEAVY SNOWFALL AREA, AIJ Journal of Technology and Design, Volume 22 (2016) no. 50, p. 341 | DOI:10.3130/aijt.22.341
- Ageing of Wood, Handbook of Materials for String Musical Instruments (2016), p. 283 | DOI:10.1007/978-3-319-32080-9_7
- Aging Effect on Hygroscopisity of Wood By Using Aged Hinoki Wood from Japanese Historical Buildings, Journal of the Society of Materials Science, Japan, Volume 65 (2016) no. 3, p. 207 | DOI:10.2472/jsms.65.207
- Hygroscopicity and Vibrational Properties of Aged and Heat-treated Wood, Mokuzai Gakkaishi, Volume 62 (2016) no. 6, p. 250 | DOI:10.2488/jwrs.62.250
- Color Changes of Wood during Natural Aging and Heat Treatment, Mokuzai Gakkaishi, Volume 62 (2016) no. 6, p. 266 | DOI:10.2488/jwrs.62.266
- Wood as Cultural Heritage Material and its Deterioration by Biotic and Abiotic Agents, Secondary Xylem Biology (2016), p. 233 | DOI:10.1016/b978-0-12-802185-9.00012-7
- Effects of aging on wood: a literature review, Wood Science and Technology, Volume 50 (2016) no. 1, p. 7 | DOI:10.1007/s00226-015-0766-0
- Chemical alterations of pine wood saccharides during heat sterilisation, Carbohydrate Polymers, Volume 117 (2015), p. 681 | DOI:10.1016/j.carbpol.2014.10.065
- Aging effects on physical and mechanical properties of spruce, fir and oak wood, Journal of Cultural Heritage, Volume 16 (2015) no. 6, p. 883 | DOI:10.1016/j.culher.2015.02.002
- Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons, Journal of Wood Science, Volume 61 (2015) no. 3, p. 251 | DOI:10.1007/s10086-015-1462-2
- Selected mechanical properties of Scots pine wood from antique churches of Central Poland, European Journal of Wood and Wood Products, Volume 72 (2014) no. 2, p. 293 | DOI:10.1007/s00107-014-0783-y
- Museum factors affecting the ageing process of organic materials: review on experimental designs and the INVENVORG project as a pilot study, Heritage Science, Volume 2 (2014) no. 1 | DOI:10.1186/2050-7445-2-2
- Stress estimation of roof axial members based on the release strain measured at demolition of the Japanese wooden traditional old temple, Journal of Wood Science, Volume 60 (2014) no. 6, p. 403 | DOI:10.1007/s10086-014-1425-z
- Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices, Materials and Structures, Volume 47 (2014) no. 6, p. 925 | DOI:10.1617/s11527-013-0103-8
- Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique, Cellulose, Volume 20 (2013) no. 2, p. 633 | DOI:10.1007/s10570-012-9853-7
- Allowable microclimatic variations for painted wood, Studies in Conservation, Volume 58 (2013) no. 2, p. 65 | DOI:10.1179/2047058412y.0000000061
- Aging law of spruce wood, Wood Material Science and Engineering, Volume 8 (2013) no. 1, p. 46 | DOI:10.1080/17480272.2012.725427
- Mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls induced by repeated wet-and-dry treatment, Cellulose, Volume 19 (2012) no. 4, p. 1405 | DOI:10.1007/s10570-012-9700-x
- Effects of aging on the vibrational properties of wood, Journal of Cultural Heritage, Volume 13 (2012) no. 3, p. S21 | DOI:10.1016/j.culher.2012.02.008
- Non-destructive testing of wood and wood-based materials, Journal of Cultural Heritage, Volume 13 (2012) no. 3, p. S26 | DOI:10.1016/j.culher.2012.04.001
- Aging of wood: Analysis of color changes during natural aging and heat treatment, Holzforschung, Volume 65 (2011) no. 3 | DOI:10.1515/hf.2011.040
Cité par 60 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier