[Propagation de la lumière dans un solide dopé aux ions Erbium : de la lumière ultralente au régime superluminal]
Dans cet article, nous décrivons la propagation ultralente et superluminale de la lumière, deux comportements étranges qui sont rendus possible grace à l'Oscillation Cohérente de Population (OCP). Nous montrons que la vitesse de groupe, vitesse de propagation de la lumière, peut être radicalement altérée et manipulée à l'aide de l'OCP dans un cristal dopé aux ions Erbium triplement ionsés : Er3+ :Y2SiO5. La forte dispersion de l'indice de refraction causée par l'effet OCP est à l'origine de vitesses de groupe aussi faibles que . En inversant le signe de la dispersion de l'indice de refraction, il est possible d'atteindre un régime où la lumière se propage plus vite que dans le vide. Celui-ci est caractérisé par des vitesses de groupes supérieures à c ou par des vitesses de groupe negatives. Dans le cristal Er3+ :Y2SiO5 long de 3 mm, nous avons obtenu des retards optiques de correspondant à une vitesse de groupe .
In this article we report on ultraslow or fast light propagation, exciting behavior that become achievable thanks to the Coherent Population Oscillations effect (CPO). We show that the group velocity, the speed at which light propagates, can be drastically modified and engineered using the CPO effect in a crystal doped with triply ionized erbium ions, namely: Er3+:Y2SiO5. The steep dispersion of the index of refraction caused by the CPO effect is at the origin of group velocities as low as . By inverting the slope of the index dispersion, we can make, in the same crystal, light go faster than if it was propagating in vacuum. This particular regime is characterized by larger than c or negative group velocities. In the 3-mm-long Er3+:Y2SiO5 crystal, we have achieved a delay of corresponding to a group velocity of .
Mot clés : Lumière lente, Cristal dopé aux ions terres rares, Oscillation cohérente de population
Elisa Baldit 1 ; Stephan Briaudeau 2 ; Paul Monnier 1 ; Kamel Bencheikh 1 ; Ariel Levenson 1
@article{CRPHYS_2009__10_10_927_0, author = {Elisa Baldit and Stephan Briaudeau and Paul Monnier and Kamel Bencheikh and Ariel Levenson}, title = {Light propagation in a solid doped with erbium ions: {From} ultraslow light to the superluminal regime}, journal = {Comptes Rendus. Physique}, pages = {927--937}, publisher = {Elsevier}, volume = {10}, number = {10}, year = {2009}, doi = {10.1016/j.crhy.2009.10.013}, language = {en}, }
TY - JOUR AU - Elisa Baldit AU - Stephan Briaudeau AU - Paul Monnier AU - Kamel Bencheikh AU - Ariel Levenson TI - Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime JO - Comptes Rendus. Physique PY - 2009 SP - 927 EP - 937 VL - 10 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2009.10.013 LA - en ID - CRPHYS_2009__10_10_927_0 ER -
%0 Journal Article %A Elisa Baldit %A Stephan Briaudeau %A Paul Monnier %A Kamel Bencheikh %A Ariel Levenson %T Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime %J Comptes Rendus. Physique %D 2009 %P 927-937 %V 10 %N 10 %I Elsevier %R 10.1016/j.crhy.2009.10.013 %G en %F CRPHYS_2009__10_10_927_0
Elisa Baldit; Stephan Briaudeau; Paul Monnier; Kamel Bencheikh; Ariel Levenson. Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime. Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 927-937. doi : 10.1016/j.crhy.2009.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.013/
[1] Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser, Phys. Rev. Lett., Volume 29 (1972), p. 1346
[2] Observation of ultraslow light propagation in a ruby crystal at room temperature, Phys. Rev. Lett., Volume 90 (2003), p. 113903
[3] Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal, Phys. Rev. Lett., Volume 95 (2005), p. 143601
[4] Light speed reduction to 17 meters per second in an ultracold atomic gas, Nature, Volume 397 (1999), p. 594
[5] Tunable all-optical delays via Brillouin slow light in an optical fiber, Phys. Rev. Lett., Volume 94 (2005), p. 153902
[6] Amplification of light and atoms in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 85 (2000), p. 4225
[7] Electromagnetically induced transparency: Propagation dynamics, Phys. Rev. Lett., Volume 74 (1995), p. 2447
[8] Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas, Phys. Rev. Lett., Volume 82 (1999), p. 5229
[9] Observation of ultraslow and stored light pulses in a solid, Phys. Rev. Lett., Volume 88 (2001), p. 023602
[10] Electromagnetically induced transparency, Phys. Today, Volume 50 (1997), p. 36
[11] Nonlinear Optics, Academic Press, 1992
[12] Spectroscopic techniques based on Lamb's laser theory, Phys. Rep., Volume 43 (1978), p. 233
[13] Slow light in semiconductor quantum wells, Opt. Lett., Volume 29 (2004), p. 2291
[14] Wave interactions in saturable absorbers, Appl. Phys. Lett., Volume 10 (1967), p. 4
[15] Ultraslow light in inhomogeneously broadened media, Phys. Rev. A, Volume 73 (2006), p. 043809
[16] Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 for coherent optical applications, J. Alloys Compd., Volume 74 (2006), p. 214409
[17] Wave Propagation and Group Velocity, Academic Press, 1960
[18] Fast causal information transmission in a medium with a slow group velocity, Phys. Rev. Lett., Volume 94 (2005), p. 053902
[19] The speed of information in a fast-light optical medium, Nature, Volume 425 (2003), p. 695
Cité par Sources :
Commentaires - Politique