Comptes Rendus
Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime
[Propagation de la lumière dans un solide dopé aux ions Erbium : de la lumière ultralente au régime superluminal]
Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 927-937.

Dans cet article, nous décrivons la propagation ultralente et superluminale de la lumière, deux comportements étranges qui sont rendus possible grace à l'Oscillation Cohérente de Population (OCP). Nous montrons que la vitesse de groupe, vitesse de propagation de la lumière, peut être radicalement altérée et manipulée à l'aide de l'OCP dans un cristal dopé aux ions Erbium triplement ionsés : Er3+ :Y2SiO5. La forte dispersion de l'indice de refraction causée par l'effet OCP est à l'origine de vitesses de groupe aussi faibles que vg=3 m/s. En inversant le signe de la dispersion de l'indice de refraction, il est possible d'atteindre un régime où la lumière se propage plus vite que dans le vide. Celui-ci est caractérisé par des vitesses de groupes supérieures à c ou par des vitesses de groupe negatives. Dans le cristal Er3+ :Y2SiO5 long de 3 mm, nous avons obtenu des retards optiques de 0.2 ms correspondant à une vitesse de groupe vg=15 m/s.

In this article we report on ultraslow or fast light propagation, exciting behavior that become achievable thanks to the Coherent Population Oscillations effect (CPO). We show that the group velocity, the speed at which light propagates, can be drastically modified and engineered using the CPO effect in a crystal doped with triply ionized erbium ions, namely: Er3+:Y2SiO5. The steep dispersion of the index of refraction caused by the CPO effect is at the origin of group velocities as low as vg=3 m/s. By inverting the slope of the index dispersion, we can make, in the same crystal, light go faster than if it was propagating in vacuum. This particular regime is characterized by larger than c or negative group velocities. In the 3-mm-long Er3+:Y2SiO5 crystal, we have achieved a delay of 0.2 ms corresponding to a group velocity of vg=15 m/s.

Publié le :
DOI : 10.1016/j.crhy.2009.10.013
Keywords: Slow light, Rare-earth ion-doped crystal, Coherent population oscillation
Mot clés : Lumière lente, Cristal dopé aux ions terres rares, Oscillation cohérente de population
Elisa Baldit 1 ; Stephan Briaudeau 2 ; Paul Monnier 1 ; Kamel Bencheikh 1 ; Ariel Levenson 1

1 Laboratoire de photonique et de nanostructures LPN-CNRS, route de Nozay, 91460 Marcoussis, France
2 CNAM, 61, rue du Landy, 93210 La Plaine Saint Denis, France
@article{CRPHYS_2009__10_10_927_0,
     author = {Elisa Baldit and Stephan Briaudeau and Paul Monnier and Kamel Bencheikh and Ariel Levenson},
     title = {Light propagation in a solid doped with erbium ions: {From} ultraslow light to the superluminal regime},
     journal = {Comptes Rendus. Physique},
     pages = {927--937},
     publisher = {Elsevier},
     volume = {10},
     number = {10},
     year = {2009},
     doi = {10.1016/j.crhy.2009.10.013},
     language = {en},
}
TY  - JOUR
AU  - Elisa Baldit
AU  - Stephan Briaudeau
AU  - Paul Monnier
AU  - Kamel Bencheikh
AU  - Ariel Levenson
TI  - Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 927
EP  - 937
VL  - 10
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.10.013
LA  - en
ID  - CRPHYS_2009__10_10_927_0
ER  - 
%0 Journal Article
%A Elisa Baldit
%A Stephan Briaudeau
%A Paul Monnier
%A Kamel Bencheikh
%A Ariel Levenson
%T Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime
%J Comptes Rendus. Physique
%D 2009
%P 927-937
%V 10
%N 10
%I Elsevier
%R 10.1016/j.crhy.2009.10.013
%G en
%F CRPHYS_2009__10_10_927_0
Elisa Baldit; Stephan Briaudeau; Paul Monnier; Kamel Bencheikh; Ariel Levenson. Light propagation in a solid doped with erbium ions: From ultraslow light to the superluminal regime. Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 927-937. doi : 10.1016/j.crhy.2009.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.013/

[1] K.M. Evenson; J.S. Wells; F.R. Peterson; B.L. Danielson; G.W. Day; R.L. Barger; J.L. Hall Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser, Phys. Rev. Lett., Volume 29 (1972), p. 1346

[2] M.S. Bigelow; N.N. Lepeshkin; R.W. Boyd Observation of ultraslow light propagation in a ruby crystal at room temperature, Phys. Rev. Lett., Volume 90 (2003), p. 113903

[3] E. Baldit; K. Bencheikh; P. Monnier; J.A. Levenson; V. Rouget Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal, Phys. Rev. Lett., Volume 95 (2005), p. 143601

[4] L.V. Hau; S.E. Harris; Z. Dutton; C.H. Behroozi Light speed reduction to 17 meters per second in an ultracold atomic gas, Nature, Volume 397 (1999), p. 594

[5] Y. Okawachi; M.S. Bigelow; J.E. Sharping; Z. Zhu; A. Schweinsberg; D.J. Gauthier; R.W. Boyd; A.L. Gaeta Tunable all-optical delays via Brillouin slow light in an optical fiber, Phys. Rev. Lett., Volume 94 (2005), p. 153902

[6] S. Inouye; R.F. Löw; S. Gupta; T. Pfau; A. Görlitz; T.L. Gustavson; D.E. Pritchard; W. Ketterle Amplification of light and atoms in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 85 (2000), p. 4225

[7] A. Kasapi; Maneesh Jain; G.Y. Yin; S.E. Harris Electromagnetically induced transparency: Propagation dynamics, Phys. Rev. Lett., Volume 74 (1995), p. 2447

[8] M.M. Kash; V.A. Sautenkov; A.S. Zibrov; L. Hollberg; G.R. Welch; M.D. Lukin; Y. Rostovtsev; E.S. Fry; M.O. Scully Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas, Phys. Rev. Lett., Volume 82 (1999), p. 5229

[9] A.V. Turukhin; V.S. Sudarshanam; M.S. Shahriar; J.A. Musser; B.S. Ham; P.R. Hemmer Observation of ultraslow and stored light pulses in a solid, Phys. Rev. Lett., Volume 88 (2001), p. 023602

[10] S.E. Harris Electromagnetically induced transparency, Phys. Today, Volume 50 (1997), p. 36

[11] R.W. Boyd Nonlinear Optics, Academic Press, 1992

[12] M. Sargent Spectroscopic techniques based on Lamb's laser theory, Phys. Rep., Volume 43 (1978), p. 233

[13] P.C. Ku; F. Sedgwick; C.J. Chang-Hasnain; P. Palinginis; T. Li; H. Wang; S.W. Chang; S.L. Chuang Slow light in semiconductor quantum wells, Opt. Lett., Volume 29 (2004), p. 2291

[14] S.E. Schwarz; T.Y. Tan Wave interactions in saturable absorbers, Appl. Phys. Lett., Volume 10 (1967), p. 4

[15] G.S. Agarwal; T.N. Dey Ultraslow light in inhomogeneously broadened media, Phys. Rev. A, Volume 73 (2006), p. 043809

[16] P. Goldner; Y. Le Du; O. Guillot-Noël; E. Baldit; P. Monnier; K. Bencheikh; O. Guillot-Noël; P. Goldner; Y. Le Du; E. Baldit; P. Monnier; K. Bencheikh Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 for coherent optical applications, J. Alloys Compd., Volume 74 (2006), p. 214409

[17] L. Brillouin Wave Propagation and Group Velocity, Academic Press, 1960

[18] M.D. Stenner; D.J. Gauthier; M.A. Neifeld Fast causal information transmission in a medium with a slow group velocity, Phys. Rev. Lett., Volume 94 (2005), p. 053902

[19] M.D. Stenner; D.J. Gauthier; M.A. Neifeld The speed of information in a fast-light optical medium, Nature, Volume 425 (2003), p. 695

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Electromagnetically-induced transparency, slow light, and negative group velocities in a room temperature vapor of 4He

F. Goldfarb; T. Lauprêtre; J. Ruggiero; ...

C. R. Phys (2009)