Comptes Rendus
Assessment of rain fade mitigation techniques in the EHF band on a Syracuse 3 20/44-GHz low elevation link
[Prédiction des techniques de mitigation de l'affaiblissement en bande EHF dans le cadre du programme Syracuse 3 20/44 GHz]
Comptes Rendus. Physique, Volume 11 (2010) no. 1, pp. 18-29.

Une expérience de propagation Terre–Satellite en bande EHF a été réalisée dans le cadre du programme Syracuse 3 qui est la nouvelle génération de satellites militaires français de télécommunication. L'originalité de cette expérience réside dans les fréquences utilisées (20 GHz pour la liaison descendante et 44 GHz pour la liaison montante) et dans le faible angle d'élévation (17°). La première partie de l'article présente une analyse statistique des données concernant notamment les probabilités de dépassement, les coefficients de transposition en fréquence et les durées d'affaiblissement. Ces résultats sont comparés aux modèles standards de l'UIT. La seconde partie de l'article est dédiée à la prédiction à court-terme de l'affaiblissement qui est une étape généralement nécessaire pour implémenter des techniques adaptatives de lutte contre l'affaiblissement (FMT). L'affaiblissement sur la liaison descendante est tout d'abord prédit à l'aide d'un modèle ARIMA-GARCH non-linéaire. La prédiction est ensuite séparée en plusieurs composantes physiques (gaz, nuages et pluie) qui sont transposées à la fréquence de la liaison montante par des coefficients de transposition spécifiques. Les performances du modèle sont évaluées avec des données Syracuse 3 collectées pendant une période d'un an.

An Earth-to-satellite propagation experiment in the EHF band has been carried out within the framework of the Syracuse 3 program, which is a new generation French military SATCOM system. The originality of this experiment resides in the link's frequencies (20 GHz downlink and 44 GHz uplink) and its low elevation angle (17°). The first part of the article presents a statistical analysis of attenuation data providing the long-term statistics, frequency scaling ratios and fade durations. These results are compared to standard ITU models. The second part of the article is dedicated to the short-term forecasting of rain fade, useful for the implementation of Fade Mitigation Techniques (FMT). Firstly, the downlink attenuation is predicted based on a non-linear ARIMA-GARCH model. The prediction result is then separated into several physical components (gases, clouds and rain) that are scaled to the uplink frequency using specific frequency scaling factors. The performance of the model is assessed based on Syracuse 3 20/44-GHz data collected during a period of 1 year.

Publié le :
DOI : 10.1016/j.crhy.2009.12.002
Keywords: Propagation, Attenuation, Rain fade, Mitigation, Frequency scaling, EHF band
Mot clés : Propagation, Affaiblissement, Prédiction, Précipitation, Transposition en fréquence, Bande EHF
L. de Montera 1 ; L. Barthès 1 ; C. Mallet 1 ; P. Golé 1 ; T. Marsault 2

1 Université Versailles Saint-Quentin en Yvelines (UVSQ), laboratoire atmosphères, milieux, observations spatiales (LATMOS), 10-12, avenue de l'Europe, 78140 Vélizy-Villacoublay, France
2 Centre d'électronique de l'armement (CELAR), Bruz, France
@article{CRPHYS_2010__11_1_18_0,
     author = {L. de Montera and L. Barth\`es and C. Mallet and P. Gol\'e and T. Marsault},
     title = {Assessment of rain fade mitigation techniques in the {EHF} band on a {Syracuse} 3 {20/44-GHz} low elevation link},
     journal = {Comptes Rendus. Physique},
     pages = {18--29},
     publisher = {Elsevier},
     volume = {11},
     number = {1},
     year = {2010},
     doi = {10.1016/j.crhy.2009.12.002},
     language = {en},
}
TY  - JOUR
AU  - L. de Montera
AU  - L. Barthès
AU  - C. Mallet
AU  - P. Golé
AU  - T. Marsault
TI  - Assessment of rain fade mitigation techniques in the EHF band on a Syracuse 3 20/44-GHz low elevation link
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 18
EP  - 29
VL  - 11
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.12.002
LA  - en
ID  - CRPHYS_2010__11_1_18_0
ER  - 
%0 Journal Article
%A L. de Montera
%A L. Barthès
%A C. Mallet
%A P. Golé
%A T. Marsault
%T Assessment of rain fade mitigation techniques in the EHF band on a Syracuse 3 20/44-GHz low elevation link
%J Comptes Rendus. Physique
%D 2010
%P 18-29
%V 11
%N 1
%I Elsevier
%R 10.1016/j.crhy.2009.12.002
%G en
%F CRPHYS_2010__11_1_18_0
L. de Montera; L. Barthès; C. Mallet; P. Golé; T. Marsault. Assessment of rain fade mitigation techniques in the EHF band on a Syracuse 3 20/44-GHz low elevation link. Comptes Rendus. Physique, Volume 11 (2010) no. 1, pp. 18-29. doi : 10.1016/j.crhy.2009.12.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.12.002/

[1] M. Cheffena; C. Amaya Prediction model of fade duration statistics for satellite links between 10–50 GHz, IEEE Antennas and Wireless Propagation Letters, Volume 7 (2008)

[2] L. de Montera et al. Short-term prediction of rain attenuation level and volatility in Earth-to-satellite links at EHF band, Nonlin. Process. Geophys., Volume 15 (2008) no. 4, pp. 631-643

[3] T. Marsault, et al., EHF propagation experiment with Syracuse 3 satellite: First results, in: 2nd European Conference on Antennas and Propagation (EuCAP), 2007

[4] J.-Y. Delahaye et al. A dual-beam spectropluviometer concept, J. Hydrol., Volume 328 (2006), pp. 110-120

[5] C. Mallet; J. Lavergnat Beacon calibration with a multifrequency radiometer, Radio Sci., Volume 27 (1992) no. 5, pp. 661-680

[6] L. Barthes et al. Neural network model for atmospheric attenuation retrieval between 20 and 50 GHz by means of dual-frequency microwave radiometers, Radio Sci., Volume 38 (2003) no. 5, p. 1082

[7] ITU-R (618-9, 676-6, 840-3), International Telecommunication Union Radiocommunication Bureau, Geneva, 2007

[8] J.C. Gibbins Improved algorithms for the determination of specific attenuation at sea level by dry air and water vapor, in the frequency range 1–350 GHz, Radio Sci., Volume 21 (1986) no. 6, pp. 949-954

[9] H.J. Liebe MPM – An atmospheric millimeter-wave propagation model, Int. J. Infr. Mill. Waves, Volume 10 (1989), pp. 631-650

[10] ITU-R P1623-1, International Telecommunication Union Radiocommunication Bureau, Geneva, 2003–2005

[11] P. Golé, et al., Les résultats de l'expérience OLYMPUS France Telecom FTR&D, technical report NT/CETP/001, 1994

[12] OPEX, Second Workshop of the OLYMPUS Propagation Experimenters, vol. 1: Reference Book on Attenuation Measurement and Prediction, Noordwijk, 8–10 Nov. 1994

[13] S. Lovejoy; D. Schertzer Turbulence, rain drops and the l1/2 number density law, New J. Phys., Volume 10 (2008), p. 075017

[14] A.M. Bolea-Alamañac, et al., Implementation of short-term prediction models in fade mitigation techniques control loops, in: COST 272/280 Workshop, ESA/ESTEC, Noordwijk, The Netherlands, 2003, PM5-067

[15] L. Castanet, et al., Channel modelling based on N-state Markov chains for SatCom systems simulation, in: ICAP 2003, Exeter, UK, 2003, pp. 119–122

[16] M.M.J.L. Van de Kamp Short-term prediction of rain attenuation using two samples, Electron. Lett., Volume 38 (2002) no. 23, pp. 1476-1477

[17] R.M. Manning A unified statistical rain attenuation model for communication link fade predictions and optimal stochastic fade control design using a location dependent rain statistic database, Int. J. Satellite Commun., Volume 8 (1990), pp. 11-30

[18] R.M. Manning, A statistical rain attenuation prediction model with application to the Advanced Communication Technology Satellite Project, part III: A stochastic rain fade control algorithm for satellite link power via nonlinear Markov filtering theory, NASA, 1991, TM-100243

[19] A.P. Chambers; L.E. Otung Neural network approach to short-term fade prediction on satellite links, Electron. Lett., Volume 41 (2005) no. 23, pp. 1290-1292

[20] B. Grémont et al. Comparative analysis and performance of two predictive fade detection schemes for Ka-band fade countermeasures, IEEE J. Select. Areas Commun., Volume 17 (1999) no. 2, pp. 180-192

Cité par Sources :

Commentaires - Politique