Comptes Rendus
Radio sciences and disaster management
[Radios sciences et gestion des catastrophes]
Comptes Rendus. Physique, Volume 11 (2010) no. 1, pp. 114-124.

Les services de communication radio et d'observations radios sont essentiels dans toutes les phases de gestion de catastrophes. Parmi les programmes à engager pour réduire l'impact des catastrophes naturelles ou induites par l'activité humaine, on examine la possibilité de transferts de résultats d'études fondamentales, conduites dans le domaine des sciences radio, vers la recherche opérationnelle. Deux aspects particuliers sont étudiés : (i) le transfert de techniques de traitement d'images, développées dans d'autres contextes, dans la gestion des risques, et (ii) l'utilisation des connaissances acquises, sur les effets des variations de l'environnement spatial sur la propagation transionosphérique, pour évaluer l'intérêt d'une prise en compte de ces effets dans l'exploitation des services de communication et d'observation radio. On montre que quatre techniques de traitement d'image peuvent être extrêmement utiles à la gestion des catastrophes : le zonage, le comptage d'objets, la détection des routes et autres réseaux, et l'évaluation des dommages qui est le résultat de l'enchaînement de plusieurs traitements radiométrique et géométrique. Une brève revue des effets des variations de l'ionosphère sur la propagation des ondes radio, jusqu'à quelques GHz, permet d'évaluer les impacts potentiels sur les systèmes de communication et montre la nécessité d'introduire des corrections ionosphériques dans plusieurs services d'observation.

Radio communication and observation services are critical at all levels of disaster management. Among the programmes to be introduced to reduce the impact of natural and human induced disasters, potential transfers from basic research in radio science to research in disaster management are examined. Two specific aspects are studied: (i) the transfer of image processing techniques, developed in other contexts, to risk management; and (ii) the use of knowledge gathered on the effects of variations in the space environment on trans-ionospheric propagation, to gauge the interest of integrating those effects into the exploitation of communications and observation systems. Four families of image processing techniques are shown to be particularly useful to the disaster manager: zoning, counting of objects, roads and network detection, and damage assessment resulting from a series of different radiometric and geometric methods. A brief review of the effects of ionospheric variations on radio propagation up to a few GHz shows both the potential impacts of those variations on communication systems and the importance of introducing ionospheric corrections into several observation services.

Publié le :
DOI : 10.1016/j.crhy.2010.02.002
Keywords: Risk assessment, Remote sensing, Telecommunications
Mot clés : Évaluation du risque, Télédétection, Télécommunications
Tullio Joseph Tanzi 1 ; François Lefeuvre 2

1 Institut Télécom, Télécom ParisTech, LTCI/CNRS, 36, rue Barrault, 75634 Paris cedex 13, France
2 CNRS/LPCE, 3A, avenue de la recherche scientifique, 45071 Orléans cedex 02, France
@article{CRPHYS_2010__11_1_114_0,
     author = {Tullio Joseph Tanzi and Fran\c{c}ois Lefeuvre},
     title = {Radio sciences and disaster management},
     journal = {Comptes Rendus. Physique},
     pages = {114--124},
     publisher = {Elsevier},
     volume = {11},
     number = {1},
     year = {2010},
     doi = {10.1016/j.crhy.2010.02.002},
     language = {en},
}
TY  - JOUR
AU  - Tullio Joseph Tanzi
AU  - François Lefeuvre
TI  - Radio sciences and disaster management
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 114
EP  - 124
VL  - 11
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.02.002
LA  - en
ID  - CRPHYS_2010__11_1_114_0
ER  - 
%0 Journal Article
%A Tullio Joseph Tanzi
%A François Lefeuvre
%T Radio sciences and disaster management
%J Comptes Rendus. Physique
%D 2010
%P 114-124
%V 11
%N 1
%I Elsevier
%R 10.1016/j.crhy.2010.02.002
%G en
%F CRPHYS_2010__11_1_114_0
Tullio Joseph Tanzi; François Lefeuvre. Radio sciences and disaster management. Comptes Rendus. Physique, Volume 11 (2010) no. 1, pp. 114-124. doi : 10.1016/j.crhy.2010.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.02.002/

[1] T.J. Tanzi, S. Servigne, A crisis management information system, in: Proceedings of the International Emergency Management and Engineering Society, TIEMEC'98, Washington DC, May 19–22, 1998, pp. 211–220

[2] J. Rodriguez, V. Femke, R. Below, D. Gupar-Sapir, Annual disaster statistical review 2008, the numbers and trends, Centre for Research on the Epidemiology of Disasters, 2009

[3] B. Bala; L.J. Lanzerotti; D.E. Gary; D.J. Thomson Noise in wireless systems produced by solar radio bursts, Radio Sci., Volume 37 (2002) no. 2, p. 1018 | DOI

[4] T.J. Tanzi; S. Servigne Vers un système spatial temps réel d'aide à la décision, Journée SIGURA octobre 1997, Rev. Internat. Géomatique, Volume 8 (1998) no. 3, pp. 33-46

[5] R. Laurini, La TéléGéomatique : Problématique et Perspectives, Journées Cassini 1998, Marne la vallée 25–27 novembre 1998

[6] T.J. Tanzi; P. Perrot Télécoms pour l'ingénierie du risque. Collection technique et scientifique des telecoms, Hermes Editions, Paris, 2009

[7] R.M. Haralick; K. Shanmugan; I. Dinstein Textural features for image classification, IEEESMC, Volume 3 ( November 1973 ) no. 6, pp. 610-621

[8] M. Campedel, I. Kyrgyzov, H. Maître, Unsupervised feature selection applied to spot5 satellite images indexing, in: JMLR, Proceedings FSDM, Anvers (Belgique), 2008

[9] J. Rissanen Modeling by shortest data description, Automatica, Volume 14 (1978), pp. 465-471

[10] Envenimation scorpionique, rapport annuel, sur la situation épidémiologique en Algérie année 2000, Technical report, Institut national de sante publique, République algérienne démocratique et populaire, ministère de la sante, de la population et de la reforme hospitalière, 2001

[11] Répartition de la population par répartition par sexe, Année 2008, Technical report, CIA, CIA World Factbook, Mai 16, 2008

[12] Y. Kawasumi Communications for rural and remote areas, ITU News Magazine, Volume 05 (2004)

[13] X. Carcelle, An introduction to power line communications, in: MySQL Conference and Expo, Santa Clara, CA, April 14–17, 2008

[14] M. Liennard; M. Olicas Carrion; V. Degardin; P. Degauque Modeling and analysis of in-vehicle power line communication channels, IEEE Trans. Vehicular Technol., Volume 57 (2008) no. 2, pp. 670-679

[15] G. Iapichino, O. del Rio Herrero, C. Bonnet, C. Baudoin, I. Buret, A mobile ad-hoc satellite and wireless mesh networking approach for public safety communications, in: 10th International Workshop on Signal Processing for Space Communications, SPC 2008, 25 Nov 2008, pp. 1–6

[16] M. Ghozzi; M. Dohler; F. Max; J. Palicot Cognitive radio: Methods for the detection of free bands, C. R. Physique, Volume 7 (2006), pp. 794-804

[17] R. Westwater; S. Crewell; C. Mätzler A review of surface-based microwave and millimetre wave radiometric remote sensing of the troposphere, Radio Sci. Bull., Volume 310 ( Sept 2004 ), pp. 59-80

[18] M. Bevis; S. Businger; T.A. Herring; C. Rockon; R.A. Anthes; R.H. Ware Remote sensing of atmospheric water vapour using the global positioning system, J. Geophys. Res., Volume 97 (1992), pp. 15787-15801

[19] S. Businger; S.S.R. Chiswell; M. Bevis; J. Duan; R. Anthes; C. Rocken; R.H. Ware; T.M. Exner; T. Van Hove; F. Solheim The promise of GPS in atmospheric monitoring, Bull. Amer. Mt. Soc., Volume 77 (1996), pp. 5-17

[20] E. Doerflinger Les applications météorologiques du système de positionnement satellitaire GPS, Navigation, Volume 56 (2008) no. 223, pp. 15-40

[21] G.A. Occhipinti; A. Komjathy; P. Logonné Tsunami detection by GPS: How ionospheric observations might improve the Global Warning System, GPS World, Volume 50–56 ( Feb 2008 )

[22] N. Jakowski Radio occultation techniques for probing the ionosphere, Radio Sci. Bull., Volume 314 (2005), pp. 4-15

[23] F.J. Meyer; J.B. Nicoll Prediction, detection and correction of Faraday rotation in full-polarimetric L-band SAR data, IEEE Trans. Geosci. Remote Sens., Volume 6 (2008) no. 10, pp. 3076-3086

[24] L.J. Lanzerotti; D.E. Gary; G.M. Nita; D.J. Thomson; C.G. Maclennan Noise in wireless systems produced by solar radio bursts, Adv. Space. Res., Volume 36 (2005), pp. 2253-2257

[25] A.P. Cerruti; P.M. Kintner; D.E. Gary; A.J. Mannucci; J. Anthony; R.F. Meyer; P. Doherty; A.J. Coster Effect of intense December 2006 solar radio burst on GPS receivers, Space Weather, Volume 6 (2008) no. 10

[26] P.P.M. Kintner; B. O'Handlov; D.E. Gary; P.M.S. Kintner Global positioning system and solar radio burst forensics, Radio Sci., Volume 44 (2009) no. 2

[27] NOAA space weather scale http://www.swpc.noaa.gov/NOAAscales/

[28] L. Bertel; C. Brousseau; Y. Ehrel; D. Lemur; F. Marie; M. Oger New improvements in HF ionospheric communication and direction finding systems (J. Lilensten, ed.), Space Weather, Research towards Applications in Europe, ESA, COST 724, Springer, 2007, pp. 147-168

[29] H.E. Whitney; S. Basu The effect of ionospheric scintillation VHF/UHF satellite communication, Radio Sci., Volume 12 (1977), pp. 123-133

[30] S. Basu; E. Mackenzie; Su. Basu Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods, Radio Sci., Volume 23 (1988), pp. 363-378

[31] O. De la Beaujardière; the C/NOFS Science Definition Team C/NOFS: a mission to forecast scintillations, J. Atm. Sol. Terr. Phys., Volume 66 (2004), pp. 1573-1591

[32] P.M. Kintner; B.M. Ledvina; E.R. de Paula GPS and ionospheric scintillations, J. Geophys. Res. Space Weather, Volume 5 (2007), p. S09003 | DOI

[33] P.S. Cannon; K. Groves; D.J. Fraser; W.J. Donelly; K. Perrier Signal distortion on VHF/UHF trans-ionospheric paths: First results from the wideband ionospheric distortion experiment, Radio Sci., Volume 41 (2006), p. RS5S40

[34] Z.-W. Xu; J. Wu; Z.-S. Wu Potential effects of the ionosphere on space-based SAR imaging, IEEE Trans. Antennas Propag., Volume 56 (2008) no. 7, pp. 1968-1975

[35] F. Meyer, B. Kamper, R. Bamler, J. Fischer, Methods for atmospheric corrections in InSAR data, in: Proceedings of Fringe 05, Frescati, Italy, 2005

[36] Z. Li; E.J. Fielding; P. Cross; J.P. Muller Interferometric synthetic aperture radar atmospheric correction: Medium resolution imaging spectrometer and advanced synthetic aperture radar integration, Geophys. Res. Lett., Volume 33 (2006), p. L06816

[37] J. Boan Radio experiment with fire, IEEE Antennas Wireless Propag. Lett., Volume 6 (2007), pp. 411-414

[38] C. Coleman; J. Boan A Kirchhoff integral approach to radio wave propagation in fire, Antennas and Propagation Society International Symposium, 9–15 June 2007, IEEE, 2007, pp. 3752-3755

[39] K.M. Mphale, Radiowave propagation measurements and prediction in bushfires, PhD thesis, James Cook University, Australia, 2008

[40] P. Pampaloni; K. Saranboni Microwave remote sensing of land, Radio Sci. Bull., Volume 308 ( March 2004 ), pp. 30-46

[41] F. Barlier, Galileo, a strategical, scientific and technical stake, in: Harmattan (Ed.), Collection Strategical Perspectives, February 2008

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Drone-borne GPR design: Propagation issues

Madhu Chandra; Tullio Joseph Tanzi

C. R. Phys (2018)


Autonomous system for data collection: Location and mapping issues in post-disaster environment

Tullio Joseph Tanzi; Jean Isnard

C. R. Phys (2019)