Comptes Rendus
Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging
[Systèmes de rayonnement térahertz, ajustables en fréquence, basés sur des effets optiques non linéaires, et leurs applications en imagerie]
Comptes Rendus. Physique, Volume 11 (2010) no. 7-8, pp. 457-471.

Nous avons développé des sources de rayonnement térahertz basées sur des techniques d'optique non linéaire, qui sont réglables sur une très large bande fréquentielle. Dans la région 1–3 THz, nous avons construit un oscillateur paramétrique comprenant un cristal non linéaire de LiNbO3 dopé MgO au sein d'une cavité résonante en anneau. Pour la génération très large bande (1–40 THz), le cristal organique DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) présente des performances très prometteuses. Ainsi, nous l'avons utilisé pour de la génération THz par différence de fréquence entre les 2 faisceaux délivrés par un oscillateur optique paramétrique en KTP (KTiOPO4). De plus, la technique non linéaire de « up-conversion » permet une détection des ondes THz avec une extrême sensibilité et un temps de réponse très bref à température ambiante. En employant ces sources, nous avons enregistré des cartes de concentration aqueuse de tissus biologiques et des cartes de densité de charges libres dans des semi-conducteurs.

We have developed widely tunable terahertz (THz)-wave sources using nonlinear optical crystals. In the 1–3 THz region, a frequency-agile THz-wave parametric oscillator in a ring-cavity configuration has been realized using MgO-doped LiNbO3 as the nonlinear crystal. An organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal is promising for THz-wave generation in an ultra-wide range 1–40 THz. Difference-frequency generation from DAST, pumped using a dual-wavelength KTiOPO4 (KTP) optical parametric oscillator, is demonstrated. Additionally, THz-wave detection, with high sensitivity, fast response-time and room-temperature operation, is achieved by nonlinear up-conversion. Water concentration mapping of biological tissue samples and carrier density mapping of semiconductor wafers using frequency-agile THz-wave sources are demonstrated.

Publié le :
DOI : 10.1016/j.crhy.2010.05.005
Keywords: Terahertz-wave parametric oscillation/generation, Difference frequency generation, Widely tunable source, Terahertz-wave detection, Nonlinear optical conversion, Carrier density mapping, Water concentration mapping
Mot clés : Oscillation/génération térahertz paramétrique, Génération par différence de fréquence, Génération très large bande, Détection des ondes THz, Conversion optique non linéaire, Carte de densité de charges libres, Carte de concentration aqueuse
Hiroaki Minamide 1 ; Hiromasa Ito 1, 2

1 RIKEN Advanced Science Institute, 519-1399 Aramaki Aoba, Sendai, Miyagi, 980-0845, Japan
2 Graduate School of Engineering, Tohoku University, Aramaki Aoba, Sendai, Miyagi, 980-8579, Japan
@article{CRPHYS_2010__11_7-8_457_0,
     author = {Hiroaki Minamide and Hiromasa Ito},
     title = {Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging},
     journal = {Comptes Rendus. Physique},
     pages = {457--471},
     publisher = {Elsevier},
     volume = {11},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crhy.2010.05.005},
     language = {en},
}
TY  - JOUR
AU  - Hiroaki Minamide
AU  - Hiromasa Ito
TI  - Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 457
EP  - 471
VL  - 11
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.05.005
LA  - en
ID  - CRPHYS_2010__11_7-8_457_0
ER  - 
%0 Journal Article
%A Hiroaki Minamide
%A Hiromasa Ito
%T Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging
%J Comptes Rendus. Physique
%D 2010
%P 457-471
%V 11
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2010.05.005
%G en
%F CRPHYS_2010__11_7-8_457_0
Hiroaki Minamide; Hiromasa Ito. Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging. Comptes Rendus. Physique, Volume 11 (2010) no. 7-8, pp. 457-471. doi : 10.1016/j.crhy.2010.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.05.005/

[1] F. Zernike; P.R. Berman Generation of far infrared as a difference frequency, Phys. Rev. Lett., Volume 15 (1965), pp. 999-1001

[2] T. Yajima; K. Inoue Submillimeter-wave generation by optical difference-frequency mixing of ruby R1 and R2 laser lines, Phys. Lett. A, Volume 26 (1968), p. 281

[3] M.A. Piestrup; R.N. Fleming; R.H. Pantell Continuously tunable submillimeter wave source, Appl. Phys. Lett., Volume 26 (1975), pp. 418-421

[4] K. Kawase; M. Sato; T. Taniuchi et al. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler, Appl. Phys. Lett., Volume 68 (1996), pp. 2483-2485

[5] J. Shikata; K. Kawase; M. Sato et al. Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator, Electron. Comm. Jpn. Part II, Electronics, Volume 82 (1999), pp. 46-53

[6] K. Kawase; M. Sato; K. Nakamura et al. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition, Appl. Phys. Lett., Volume 71 (1997), pp. 753-755

[7] K. Imai; K. Kawase; H. Ito A frequency-agile terahertz-wave parametric oscillator, Opt. Express, Volume 8 (2001), pp. 699-704

[8] T. Ikari; X.B. Zhang; H. Minamide et al. THz-wave parametric oscillator with a surface-emitted configuration, Opt. Express, Volume 14 (2006), pp. 1604-1610

[9] K. Imai; K. Kawase; J. Shikata et al. Injection-seeded terahertz-wave parametric oscillator, Appl. Phys. Lett., Volume 78 (2001), pp. 1026-1028

[10] R.X. Guo; K. Akiyama; H. Minamide et al. All-solid-state, narrow linewidth, wavelength-agile terahertz-wave generator, Appl. Phys. Lett., Volume 88 (2006), p. 091120

[11] A. Sato; K. Kawase; H. Minamide et al. Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser, Rev. Sci. Instrum., Volume 72 (2001), pp. 3501-3504

[12] H. Minamide; K. Kawase; K. Imai et al. Conference on Lasers and Electro-Optics, OSA Technical Digest, Optical Society of America, Washington, D.C., 2001, p. 425

[13] H. Minamide; T. Ikari; H. Ito Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration, Rev. Sci. Instrum., Volume 80 (2009) (123104-1–123104-5)

[14] K. Kawase; J. Shikata; H. Minamide et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator, Appl. Opt., Volume 40 (2001), pp. 1423-1426

[15] K. Akiyama, H. Minamide, H. Ito, Spectroscopic imaging with a ring-cavity THz-wave parametric oscillator, in: 13th Coherent Laser Radar Conference, 2005, pp. 214–217.

[16] Y. Watanabe; K. Kawase; T. Ikari et al. Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging, Appl. Opt., Volume 42 (2003), pp. 5744-5748

[17] H. Nakanishi; H. Matsuda; S. Okada et al., Proceedings of the Material Research Society International Meeting on Advanced Materials, vol. 1, Material Research Society, 1989, p. 97

[18] S. Ohno, K. Miyamoto, H. Minamide, et al., Novel method to measure the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra wideband THz region, in: The 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2009), 2009.

[19] H. Ito; K. Suizu; T. Yamashita et al. Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, Jpn. J. Appl. Phys., Volume 1 (2007) no. 46, pp. 7321-7324

[20] M. Ashida, R. Akai, H. Shimosato, et al., Ultrabroadband THz field detection beyond 170 THz with a photoconductive antenna, in: The Conference on Lasers and Electro-Optics (CLEO), CTuX6, 2008.

[21] W. Shi; Y.J. Ding; N. Fernelius et al. Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal, Appl. Phys. Lett., Volume 88 (2006) (101101-1–101101-3)

[22] A.A. Babin; V.N. Petryakov; G.I. Freidman Use of stimulated scattering by polaritons in detection of submillimeter radiation, Sov. J. Quant. Electron., Volume 13 (1983), pp. 958-960

[23] R. Guo; S. Ohno; H. Minamide et al. Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process, Appl. Phys. Lett., Volume 93 (2008), p. 021106

[24] H. Minamide, J. Zhang, R. Guo, et al., Terahertz-wave detection using an organic DAST crystal covering ultra-wide frequency range at room temperature, in: Conference on Lasers and Electro Optics 2009, CLEO 2009, 2009.

[25] H. Minamide, J. Zhang, R. Guo, et al., Tunable terahertz-wave detection using a DAST optical up-conversion, in: The 34th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2009, 2009.

[26] T. Ikari, S. Aiba, H. Minamide, et al., Water content level mapping by THz wave in thin biological tissue, in: The 15th International Conference on Luminescence and Optical Spectroscopy of Condensed Matter, 2008, p. 268.

[27] S. Ohno; A. Hamano; K. Miyamoto et al. Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source, J. Europ. Opt. Soc. Rap. Public., Volume 4 (2009), p. 09012

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

THz imaging techniques for nondestructive inspections

Kodo Kawase; Takayuki Shibuya; Shin'ichiro Hayashi; ...

C. R. Phys (2010)