Comptes Rendus
One- and two-dimensional spin correlation of complex fluids and the relation to fluid composition
[Corrélations de spin à une et deux dimensions dans les fluides complexes reliées à leurs compositions]
Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 181-191.

Beaucoup de fluides naturels, en particulier les huiles lourdes, sont des mélanges complexes de molécules possédant une large distribution de tailles et de propriétés chimiques. Dans ces systèmes, la dynamique des molécules est complexe et le comportement de relaxation et de diffusion ne peut pas se décrire par un simple temps de relaxation ou coefficient de diffusion. Néanmoins, la relaxation RMN à bas champ et les mesures de diffusion sont devenus des outils puissants pour étudier de tels fluides. On peut contourner la complexité en analysant les mesures en termes de fonctions de distributions à une et deux dimensions. Les fonctions de distribution de relaxation et de diffusion à une dimension sont directement reliées à la composition des fluides. On montre également que l'analyse de la forme des déclins de relaxation et de diffusion permet de prédire la dépendance en température de la viscosité. Les fonctions de distribution à deux dimensions permettent de suivre d'autres aspects de la dynamique moléculaire. Les corrélations entre les comportements de relaxation T1 et T2 peuvent être utilisés pour détecter des mouvements lents et mettre en évidence l'agrégation des molécules en structures supramoléculaires. Les corrélations entre les fonctions de distribution de diffusion et de relaxation donnent enfin des informations sur la composition chimique des fluides étudiés.

Many natural fluids, including crude oils, are complex mixtures of molecules with a broad range of sizes and chemical properties. In such systems, the molecular dynamics is complex and the relaxation and diffusion behavior cannot be described by a single relaxation time or diffusion coefficient. Nevertheless, low field NMR relaxation and diffusion measurements have become powerful tools for the study of such fluids. The complexity can be overcome by analyzing the measurements in terms of one- and two-dimensional distribution functions. The one-dimensional relaxation and diffusion distribution functions are directly related to the composition of the fluids. We also show that from the analysis of the shape of the relaxation and diffusion decay, it is possible to predict the temperature dependence of viscosity. Two-dimensional distribution functions probe further aspects of the molecular dynamics. The correlation between T1 and T2 relaxation behavior can be used to detect the presence of slow motion and to probe the aggregation of molecules into supermolecular structures. Diffusion–relaxation distribution functions give information about the chemical composition of the fluid.

Publié le :
DOI : 10.1016/j.crhy.2010.06.016
Keywords: Complex fluids, Crude oils, Low field relaxation, Diffusion, Inverse Laplace transform, Fluid composition, Scaling
Mot clés : Fluides complexes, Huiles lourdes, Relaxation à bas champ, Diffusion, Transformée de Laplace Inverse, Composition de fluide, « Scaling »
Denise E. Freed 1 ; Martin D. Hürlimann 1

1 Schlumberger-Doll Research, One Hampshire Street, Cambridge, MA 02139, USA
@article{CRPHYS_2010__11_2_181_0,
     author = {Denise E. Freed and Martin D. H\"urlimann},
     title = {One- and two-dimensional spin correlation of complex fluids and the relation to fluid composition},
     journal = {Comptes Rendus. Physique},
     pages = {181--191},
     publisher = {Elsevier},
     volume = {11},
     number = {2},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.016},
     language = {en},
}
TY  - JOUR
AU  - Denise E. Freed
AU  - Martin D. Hürlimann
TI  - One- and two-dimensional spin correlation of complex fluids and the relation to fluid composition
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 181
EP  - 191
VL  - 11
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.016
LA  - en
ID  - CRPHYS_2010__11_2_181_0
ER  - 
%0 Journal Article
%A Denise E. Freed
%A Martin D. Hürlimann
%T One- and two-dimensional spin correlation of complex fluids and the relation to fluid composition
%J Comptes Rendus. Physique
%D 2010
%P 181-191
%V 11
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.06.016
%G en
%F CRPHYS_2010__11_2_181_0
Denise E. Freed; Martin D. Hürlimann. One- and two-dimensional spin correlation of complex fluids and the relation to fluid composition. Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 181-191. doi : 10.1016/j.crhy.2010.06.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.016/

[1] N. Bloembergen; E.M. Purcell; R.V. Pound Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev., Volume 73 (1948), pp. 679-712

[2] J. Kowalewski; L. Mäler Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications, Taylor & Francis, New York, London, 2006

[3] R.L. Grob; E.F. Barry Modern Practice of Gas Chromatography, Wiley–Interscience, 2004

[4] A.G. Marshall Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development, Int. J. Mass Spectrom., Volume 200 (2000), pp. 331-356

[5] R.R. Ernst; G. Bodenhausen; A. Wokaun Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, 1987

[6] A. Abragam The Principles of Nuclear Magnetism, Oxford University Press, 1961

[7] R. Kimmich; E. Anoardo Field-cycling NMR relaxometry, Prog. Nucl. Magn. Reson. Spectrosc., Volume 44 (2004), pp. 257-320

[8] E.J. Fordham; A. Sezginer; L.D. Hall Imaging multiexponential relaxation in the (y,logeT1) plane, with application to clay filtration in rock cores, J. Magn. Reson. A, Volume 113 (1995), pp. 139-150

[9] Y.-Q. Song; L. Venkatarmanan; M.D. Hürlimann; M. Flaum; P. Frulla; C. Straley T1T2 correlation spectra obtained using a fast two-dimensional Laplace inversion, J. Magn. Reson., Volume 154 (2002), pp. 261-268

[10] M.D. Hürlimann; L. Venkataramanan Quantitative measurement of two dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields, J. Magn. Reson., Volume 157 (2002), pp. 31-42

[11] L. Venkataramanan; Y.-Q. Song; M.D. Hürlimann Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Trans. Signal Process., Volume 50 (2002), pp. 1017-1026

[12] C. Epstein; J. Schotland The bad truth about Laplace's transform, SIAM Rev., Volume 50 (2008), pp. 504-520

[13] M. Prange; Y.Q. Song Quantifying uncertainty in NMR T2 spectra using Monte Carlo inversion, J. Magn. Reson., Volume 196 (2009), pp. 54-60

[14] D.E. Freed; L. Burcaw; Y.-Q. Song Scaling laws for diffusion coefficients in mixtures of alkanes, Phys. Rev. Lett., Volume 94 (2005), p. 067602

[15] M. Doi; S.F. Edwards The Theory of Polymer Dynamics, Oxford University Press, 1998

[16] D.E. Freed Dependence on chain length of NMR relaxation times in mixtures of alkanes, J. Chem. Phys., Volume 126 (2007), p. 174502

[17] D.E. Woessner; B.S. Snowden; R.A. McKay; E.T. Strom Proton and deuteron spin-lattice relaxation in n-dodecane, J. Magn. Reson., Volume 1 (1969), pp. 105-118

[18] R. Kimmich; R. Bachus NMR field-cycling relaxation spectroscopy, transverse NMR relaxation, self-diffusion and zero-shear viscosity: Defect diffusion and reptation in non-glassy amorphous polymers, Colloid Polym. Sci., Volume 260 (1982), pp. 911-936

[19] D.E. Freed Temperature and pressure dependence of the diffusion coefficients and NMR relaxation times of mixtures of alkanes, J. Phys. Chem. B, Volume 113 (2009), pp. 4293-4302

[20] A.R. Mutina; M.D. Hürlimann Correlation of transverse and rotational diffusion coefficient: A probe of chemical composition in hydrocarbon oils, J. Phys. Chem. A, Volume 112 (2008), pp. 3291-3301

[21] L. Zielinski; I. Saha; D.E. Freed; M.D. Hürlimann; Y. Liu Probing asphaltene aggregation in native crude oils with low-field NMR, Langmuir, Volume 26 (2010), pp. 5014-5021

[22] M.D. Hürlimann; M. Flaum; L. Venkataramanan; C. Flaum; R. Freedman; G.J. Hirasaki Diffusion–relaxation distribution functions of sedimentary rocks in different saturation states, Magn. Reson. Imaging, Volume 21 (2003), pp. 305-310

[23] L. Monteilhet; J.-P. Korb; J. Mitchell; P.J. McDonald Observation of exchange of micropore water in cement pastes by two-dimensional T2T2 nuclear magnetic resonance relaxometry, Phys. Rev. E, Volume 74 (2006), p. 061404

[24] M.D. Hürlimann; L. Burcaw; Y.Q. Song Quantitative characterization of food products by two-dimensional DT2 and T1T2 distribution functions in a static gradient, J. Colloid Interface Sci., Volume 297 (2006), pp. 303-311

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media

Petrik Galvosas; Paul T. Callaghan

C. R. Phys (2010)


Detection of asphaltene flocculation using NMR relaxometry

Alexandre Prunelet; Marc Fleury; Jean-Pierre Cohen-Addad

C. R. Chim (2004)