Comptes Rendus
Application of field-cycling NMR relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials
[Application de la relaxométrie RMN à cycle de champ à l'étude des effects induits par les ultrasons sur la dynamique moléculaire et l'ordre dans les matériaux mésomorphiques]
Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 160-171.

Une caractéristique des techniques de Résonance Magnétique Nucléaire (RMN) est la possibilité de suivre l'évolution des spins nucléaires dans une large gamme de fréquence de Larmor. On a développé une instrumentation apte à étendre les études de la relaxation des spins nucléaires jusqu'à des fréquences de Larmor inférieures à 1 kilohertz. Cette technique est la relaxométrie RMN à cycle de champ. Le présent article concerne une version expérimentale dans laquelle l'échantillon étudié est simultanément irradié par des ultrasons. Comme les ultrasons se couplent sélectivement à la dynamique collective des cristaux liquides, cette méthode ouvre des perspectives nouvelles pour l'étude de la dynamique moléculaire par relaxation RMN dans ces matériaux.

A salient characteristic of nuclear magnetic resonance (NMR) techniques is the possibility to scan nuclear spin evolutions within a broad Larmor frequency range. Special instrumentation was developed to extend nuclear spin relaxation studies up to proton Larmor frequencies in the sub-kilohertz regime, a technique known as field-cycling NMR relaxometry. This article refers to an experimental version where the sample under study is selectively subjected to ultrasonic irradiation. The fact that ultrasound couples selectively to the collective dynamics of liquid crystals, offers new insights for the study of the molecular dynamics in these materials using NMR relaxation.

Publié le :
DOI : 10.1016/j.crhy.2010.06.017
Keywords: Ultrasound, NMR relaxation, Relaxometry, Field-cycling, Nematic, Smectic, Relaxation dispersion
Mot clés : Ultrasons, Relaxation RMN, Relaxométrie, Cycle de champ, Nématique, Smectique, Dispersion de relaxation
Esteban Anoardo 1

1 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, and IFEG - CONICET, Ciudad Universitaria, X5016LAE, Córdoba, Argentina
@article{CRPHYS_2010__11_2_160_0,
     author = {Esteban Anoardo},
     title = {Application of field-cycling {NMR} relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials},
     journal = {Comptes Rendus. Physique},
     pages = {160--171},
     publisher = {Elsevier},
     volume = {11},
     number = {2},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.017},
     language = {en},
}
TY  - JOUR
AU  - Esteban Anoardo
TI  - Application of field-cycling NMR relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 160
EP  - 171
VL  - 11
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.017
LA  - en
ID  - CRPHYS_2010__11_2_160_0
ER  - 
%0 Journal Article
%A Esteban Anoardo
%T Application of field-cycling NMR relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials
%J Comptes Rendus. Physique
%D 2010
%P 160-171
%V 11
%N 2
%I Elsevier
%R 10.1016/j.crhy.2010.06.017
%G en
%F CRPHYS_2010__11_2_160_0
Esteban Anoardo. Application of field-cycling NMR relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials. Comptes Rendus. Physique, Volume 11 (2010) no. 2, pp. 160-171. doi : 10.1016/j.crhy.2010.06.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.017/

[1] F. Noack Prog. NMR Spectrosc., 18 (1986), p. 171

[2] R.-O. Seitter; R. Kimmich Encyclopedia of Spectroscopy and Spectrometry (J.C. Lindon; G.E. Tranter; J.L. Holmes, eds.), Academic Press, London, 1999, p. 2000

[3] E. Anoardo; G. Galli; G. Ferrante Appl. Magn., 20 (2001), p. 365

[4] G. Ferrante; S. Sykora Adv. Inorg. Chem., 57 (2005), p. 405

[5] R. Kimmich; E. Anoardo Prog. NMR Spectrosc., 44 (2004), p. 257

[6] F. Grinberg; M. Vilfan; E. Anoardo NMR of Ordered Liquids (E.E. Burnell; C.A. de Lange, eds.), Kluwer Academic Publishers, Amsterdam, 2003, p. 375

[7] E. Rommel; F. Noack; P. Meier; G. Kothe J. Phys. Chem., 92 (1988), p. 2981

[8] C.J. Meledandri; J. Perlo; E. Farrher; D.F. Brougham; E. Anoardo J. Phys. Chem. B, 113 (2009), p. 15532

[9] S. Aime; M. Botta; M. Fasano; E. Terreno Chem. Soc. Rev., 27 (1998), p. 19

[10] M. Rohrer; H. Bauer; J. Mintorovitch; M. Requardt; H.-J. Weinmann Invest. Radiol., 40 (2005), p. 715

[11] I. Bertini; C. Luchinat Coord. Chem. Rev., 150 (1996), p. 1

[12] P. Pincus Solid State Commun., 7 (1969), p. 415

[13] W. Wölfel; F. Noack; M. Stohrer Z. Naturforsch., 30a (1975), p. 437

[14] E. Anoardo; F. Grinberg; M. Vilfan; R. Kimmich Chem. Phys., 297 (2004), p. 99

[15] The Molecular Dynamics of Liquid Crystals (G.R. Luckhurst; C.A. Veracini, eds.), Kluwer, Dordrecht, 1994

[16] P.G. De Gennes; J. Prost The Physics of Liquid Crystals, Clarendon Press, Oxford, 1994

[17] Physical Properties of Liquid Crystals (D. Demus; J. Goodby; G.W. Gray; H.W. Spiess; V. Vill, eds.), Wiley-VCH, Weinheim, 1999

[18] F.M. Leslie Quart. J. Mech. Appl. Math., 19 (1966), p. 357

[19] R. Schaetzing; J. Litster Adv. Liq. Cryst., 4 (1979), p. 147

[20] P.G. De Gennes Solid State Commun., 10 (1972), p. 753

[21] R. Blinc; D.L. Hogenbloom; D.E. O'Reilly; E.M. Peterson Phys. Rev. Lett., 23 (1969), p. 969

[22] J.W. Doane; J.J. Visitainer Phys. Rev. Lett., 23 (1969), p. 1421

[23] J.W. Doane; D.L. Johnson Chem. Phys. Lett., 6 (1970), p. 291

[24] N. Bloembergen; E.M. Purcell; R.V. Pound Phys. Rev., 73 (1948), p. 679

[25] R.K. Wangness; F. Bloch Phys. Rev., 89 (1953), p. 728

[26] A. Abragam Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961

[27] R.R. Vold; R.L. Vold J. Chem. Phys., 88 (1988), p. 465

[28] R. Blinc; M. Luzar; M. Vilfan; M. Burgar J. Chem. Phys., 63 (1975), p. 3445

[29] M. Vilfan; M. Kogoj; R. Blinc J. Chem. Phys., 86 (1987), p. 1055

[30] H.C. Torrey Phys. Rev., 92 (1953), p. 962

[31] V. Graf; F. Noack; M. Stohrer Z. Naturforsch., 32a (1977), p. 61

[32] K.H. Schweikert; F. Noack Z. Naturforsch., 44a (1989), p. 597

[33] S. Zumer; M. Vilfan Phys. Rev. A, 17 (1978), p. 424

[34] M. Vilfan; S. Zumer Phys. Rev. A, 21 (1980), p. 672

[35] R.Y. Dong Nuclear Magnetic Resonance of Liquid Crystals, Springer, New York, 1997

[36] R. Kimmich Bull. Magn. Reson., 1 (1980), p. 195

[37] G. Nagel; W. Wölfel; F. Noack Israel J. Chem., 23 (1983), p. 380

[38] F. Noack; M. Notter; W. Weiss Liq. Cryst., 3 (1988), p. 907

[39] E. Anoardo; G.M. Ferrante Appl. Magn. Reson., 24 (2003), p. 85

[40] G.O. Forte; G.D. Farrher; L.R. Canali; E. Anoardo IEEE Trans. Control Syst. Technol., 18 (2010), p. 976

[41] J. Perlo; E. Anoardo J. Magn. Reson., 181 (2006), p. 262

[42] E. Anoardo; F. Bonetto; R. Kimmich Phys. Rev. E, 68 (2003), p. 022701

[43] H.S. Sellers; T. Margulies; W.H. Schwarz Mol. Cryst. Liq. Cryst., 162B (1988), p. 185

[44] P.K. Khabibullaev; E.V. Gevorkyan; A.S. Lagunov Rheology of Liquid Crystals, Allerton Press, New York, 1994

[45] H. Imura; K. Okano Chem. Phys. Lett., 19 (1973), p. 387

[46] S. Nagai; P. Martinoty; S. Candau J. Phys., 37 (1976), p. 769

[47] W. Helfrich Phys. Rev. Lett., 29 (1972), p. 1583

[48] J.-L. Dion J. Appl. Phys., 50 (1979), p. 2965

[49] F. Bonetto; E. Anoardo; R. Kimmich Chem. Phys. Lett., 361 (2002), p. 237

[50] J. Selinger; M. Spector; V. Greanya; B. Weslowsky; D. Shenoy; R. Shashidhar Phys. Rev. E, 66 (2002), p. 051708

[51] F. Bonetto; E. Anoardo; R. Kimmich J. Chem. Phys., 118 (2003), p. 9037

[52] F. Bonetto; E. Anoardo Phys. Rev. E, 68 (2003), p. 021703

[53] F. Bonetto; E. Anoardo J. Chem. Phys., 121 (2004), p. 554

[54] J. Perlo; L. Aguirre; J. Revelli; E. Anoardo Chem. Phys. Lett., 450 (2007), p. 170

[55] P.C. Martin; O. Parodi; P.S. Pershan Phys. Rev. A, 6 (1972), p. 2401

[56] M.R. Fisch; L.B. Sorensen; P.S. Pershan Phys. Rev. Lett., 47 (1981), p. 43

[57] A. Böttger; J.G.H. Joosten Europhys. Lett., 4 (1987), p. 1297

[58] S. Sharma; K. Neupane; A. Adorjan; A.R. Baldwin; S. Sprunt Phys. Rev. Lett., 94 (2005), p. 067801

[59] W. Helfrich Phys. Rev. Lett., 21 (1968), p. 1518

[60] F. Lonberg; S. Fraden; A.J. Hurd; R. Meyer Phys. Rev. Lett., 52 (1984), p. 1903

[61] W. Helfrich J. Chem. Phys., 51 (1969), p. 4092

[62] U.D. Kini J. Phys. II France, 5 (1995), p. 1841

[63] P.E. Cladis; W. van Saarloos; P.L. Finn; A.R. Kortan Phys. Rev. Lett., 58 (1987), p. 222

[64] E. Anoardo; R. Kimmich Chem. Phys. Lett., 440 (2007), p. 352

[65] J. Struppe; F. Noack Liq. Cryst., 20 (1996), p. 595

[66] G. Tóth; C. Denniston; J.M. Yeomans Phys. Rev. Lett., 88 (2002), p. 105504

[67] L.E. Aguirre, V. Pellegrini Mammana, E. Anoardo, in: Proceed. LatinDisplay 2009, Sao Paulo, 2009, p. 184.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Pierre-Gilles de Gennes: Beautiful and mysterious liquid crystals

Pawel Pieranski

C. R. Phys (2019)


Competition, resolution, and rotational motion in frustrated liquid crystals

John W. Goodby; Stephen J. Cowling; Verena Görtz

C. R. Chim (2009)