Comptes Rendus
Quantum Hall effect / Effet Hall quantique
Physical principles underlying the quantum Hall effect
[Principes physiques sous-jacents à lʼeffet Hall quantique]
Comptes Rendus. Physique, Volume 12 (2011) no. 4, pp. 332-346.

Dans cette contribution nous présentons une introduction aux principes physiques sous-jacents à lʼeffet Hall quantique. Un aperçu de lʼapproche de théorie des champs à lʼeffet fractionnaire et entier est donné. Lʼaccent est mis sur les mécanismes dʼannulation de lʼanomalie de gauge électromagnétique par les degrés de libertés chiraux présents le long du bord de lʼéchantillon. Les applications de ce formalisme à la conception ou à lʼinterprétation théorique dʼexpériences dʼinterférence sont brièvement exposées.

In this contribution, we present an introduction to the physical principles underlying the quantum Hall effect. The field theoretic approach to the integral and fractional effect is sketched, with some emphasis on the mechanism of electromagnetic gauge anomaly cancellation by chiral degrees of freedom located on the edge of the sample. Applications of this formalism to the design and theoretical interpretation of interference experiments are outlined.

Publié le :
DOI : 10.1016/j.crhy.2011.02.001
Keywords: Quantum Hall effect, Low-energy effective theory, Chern–Simons action, Chiral anomaly
Mot clés : Effet Hall quantique, Théorie de champs effective, Action Chern–Simons, Anomalie chirale

Samuel Bieri 1 ; Jürg Fröhlich 1

1 ETH Zürich, Institut für Theoretische Physik, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland
@article{CRPHYS_2011__12_4_332_0,
     author = {Samuel Bieri and J\"urg Fr\"ohlich},
     title = {Physical principles underlying the quantum {Hall} effect},
     journal = {Comptes Rendus. Physique},
     pages = {332--346},
     publisher = {Elsevier},
     volume = {12},
     number = {4},
     year = {2011},
     doi = {10.1016/j.crhy.2011.02.001},
     language = {en},
}
TY  - JOUR
AU  - Samuel Bieri
AU  - Jürg Fröhlich
TI  - Physical principles underlying the quantum Hall effect
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 332
EP  - 346
VL  - 12
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.02.001
LA  - en
ID  - CRPHYS_2011__12_4_332_0
ER  - 
%0 Journal Article
%A Samuel Bieri
%A Jürg Fröhlich
%T Physical principles underlying the quantum Hall effect
%J Comptes Rendus. Physique
%D 2011
%P 332-346
%V 12
%N 4
%I Elsevier
%R 10.1016/j.crhy.2011.02.001
%G en
%F CRPHYS_2011__12_4_332_0
Samuel Bieri; Jürg Fröhlich. Physical principles underlying the quantum Hall effect. Comptes Rendus. Physique, Volume 12 (2011) no. 4, pp. 332-346. doi : 10.1016/j.crhy.2011.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.001/

[1] J. Fröhlich; C. King The Chern–Simons theory and knot polynomials, Comm. Math. Phys., Volume 126 (1989), p. 167

[2] J. Fröhlich; F. Gabbiani Braid statistics in local quantum theory, Rev. Math. Phys., Volume 2 (1990), p. 251

[3] J. Fröhlich; T. Kerler Universality in quantum Hall systems, Nucl. Phys. B, Volume 354 (1991), p. 369

[4] J. Fröhlich; A. Zee Large scale physics of the quantum Hall fluid, Nucl. Phys. B, Volume 364 (1991), p. 517

[5] J. Fröhlich; U. Studer Gauge invariance and current algebra in nonrelativistic many-body theory, Rev. Mod. Phys., Volume 65 (1993), p. 733

[6] J. Fröhlich; E. Thiran Integral quadratic forms, Kac–Moody algebras, and fractional quantum Hall effect. An ADE-O classification, J. Stat. Phys., Volume 76 (1994), p. 209

[7] J. Fröhlich; U. Studer; E. Thiran A classification of quantum Hall fluids, J. Stat. Phys., Volume 86 (1995), p. 821

[8] J. Fröhlich; T. Kerler; U. Studer; E. Thiran Structuring the set of incompressible quantum Hall fluids, Nucl. Phys. B, Volume 453 (1995), p. 670

[9] J. Fröhlich; B. Pedrini New applications of the chiral anomaly (A. Fokas; A. Grigoryan; T. Kibble; B. Zegarlinski, eds.), Mathematical Physics 2000, Imperial College Press, London/Singapore, 2000 | arXiv

[10] J. Fröhlich; B. Pedrini Axions, quantum mechanical pumping, and primval magnetic fields, Como 2001 (2002) | arXiv

[11] J. Fröhlich; B. Pedrini; Ch. Schweigert; J. Walcher Universality in quantum Hall systems: coset construction of incompressible states, J. Stat. Phys., Volume 103 (2001), p. 527

[12] A. Boyarsky; V. Cheianov; J. Fröhlich Effective field theories for the ν=5/2 edge, Phys. Rev. B, Volume 80 (2009), p. 233302 | arXiv

[13] I. Levkivskyi; A. Boyarsky; J. Fröhlich; E. Sukhorukov Mach–Zhender interferometry of fractional quantum Hall edge states, Phys. Rev. B, Volume 80 (2009), p. 045319

[14] The Quantum Hall Effect (R. Prange; S.M. Girvin, eds.), Springer-Verlag, New York, 1987

[15] B. Jeckelmann; B. Jeanneret; B. Jeckelmann; B. Jeanneret The QHE as an electrical resistance standard, Sém. Poincaré, Volume 64 (2001), pp. 1603-1655

[16] K.V. Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980), p. 494

[17] D.C. Tsui; H.L. Stormer; A.C. Gossard Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982), p. 1559

[18] R.B. Laughlin Quantized Hall conductivity in two dimensions, Phys. Rev. B, Volume 23 (1981), p. 5632

[19] R.B. Laughlin Anomalous QHE: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983), p. 1395

[20] B.I. Halperin Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, Volume 25 (1982), p. 2185

[21] F.D. Haldane Fractional quantization of the Hall effect: A hierarchy of incompressible quantum Hall states, Phys. Rev. Lett., Volume 51 (1983), p. 605

[22] R. Morf; N. dʼAmbrumenil; B.I. Halperin Microscopic wave functions for the FQH states at ν=2/5 and 2/7, Phys. Rev. B, Volume 34 (1986), p. 3037

[23] R.H. Morf; N. dʼAmbrumenil; S. Das Sarma Excitation gaps in FQH states: An exact diagonalization study, Phys. Rev. B, Volume 66 (2002), p. 075408

[24] M. Greiter; X.G. Wen; F. Wilczek Paired Hall states, Nucl. Phys. B, Volume 374 (1992), p. 567

[25] V.J. Goldman; B. Su Resonant tunneling in the quantum Hall regime: measurement of fractional charge, Science, Volume 267 (1995), p. 1010

[26] L. Saminadayar; D.C. Glattli; Y. Jin; B. Etienne Observation of the e/3 fractionally charged Laughlin quasi-particle, Phys. Rev. Lett., Volume 79 (1997), p. 2526

[27] R. de-Picciotto; M. Reznikov; M. Heiblum; V. Umansky; G. Bunin; D. Mahalu; R. de-Picciotto; M. Reznikov; M. Heiblum; V. Umansky; G. Bunin; D. Mahalu Direct observation of a fractional charge, Physica B, Volume 389 (1997) no. 215, p. 162

[28] J. Fröhlich, Lectures in 2001 (partially based on Ref. [2]).

[29] A.Yu. Kitaev Fault-tolerant quantum computation by anyons, Ann. Phys., Volume 303 (2003), p. 2 (and references therein)

[30] Ch. Nayak; S. Simon; A. Stern; M. Freedman; S. Das Sarma Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), p. 1083 (and references therein)

[31] S. Treiman; R. Jackiw; B. Zumino; E. Witten Current Algebra and Anomalies, World Scientific, 1985

[32] X.G. Wen Chiral Luttinger liquid and the edge excitations in the FQH states, Phys. Rev. B, Volume 41 (1990), p. 12838

[33] C. Vafa Toward classification of conformal theories, Phys. Lett. B, Volume 206 (1988), p. 421

[34] P. Di Francesco; P. Mathieu; D. Sénéchal CFT, Springer-Verlag, New York, 1997

[35] J. Fröhlich; T. Kerler Quantum Groups, Quantum Categories and Quantum Field Theory, Lecture Notes in Mathematics, Springer, 1993

[36] J. Fuchs; I. Runkel; Ch. Schweigert Twenty five years of 2d rational CFT, J. Math. Phys., Volume 51 (2010), p. 015210 (and references therein)

[37] J. Fröhlich Spin or, actually: Spin and quantum statistics, Sém. Poincaré, Volume 11 (2007), p. 1 | arXiv

[38] P. Goddard; D. Olive Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A, Volume 1 (1986), p. 303

[39] G. Moore; N. Read Nonabelions in the FQHE, Nucl. Phys. B, Volume 360 (1991), p. 362

[40] X.G. Wen Non-abelian statistics in the FQH states, Phys. Rev. Lett., Volume 66 (1991), p. 802

[41] C. de C. Chamon; D.E. Freed; S.A. Kivelson; S.L. Sondhi; X.G. Wen Two point-contact interferometer for quantum Hall systems, Phys. Rev. B, Volume 55 (1997), p. 2331

[42] I.P. Radu; J.B. Miller; C.M. Marcus; M.A. Kastner; L.N. Pfeiffer; K.W. West Quasi-particle properties from tunneling in the 5/2 FQH state, Science, Volume 320 (2008), p. 899

[43] I.P. Levkivskyi, J. Fröhlich, E.V. Sukhorukov, PRB, submitted for publication; . | arXiv

[44] E. Bieri; M. Weiss; O. Göktas; M. Hauser; C. Schönenberger; S. Oberholzer Finite-bias visibility dependence in an electronic MZ interferometer, Phys. Rev. B, Volume 79 (2009), p. 245324

[45] E.V. Sukhorukov; V. Cheianov Resonant dephasing in the electronic MZ interferometer, Phys. Rev. Lett., Volume 99 (2007), p. 156801

[46] I.P. Levkivskyi; E.V. Sukhorukov Dephasing in the electronic MZ interferometer at filling factor two, Phys. Rev. B, Volume 78 (2008), p. 045322

[47] I.P. Levkivskyi; E.V. Sukhorukov Noise-induced phase transition in the electronic MZ interferometer, Phys. Rev. Lett., Volume 3 (2009), p. 036801

[48] S. Deser; R. Jackiw; S. Templeton Topologically massive gauge theories, Ann. Phys., Volume 140 (1982), p. 372

[49] J. Bellissard; A. van Elst; H. Schulz-Baldes The noncommutative geometry of the QHE, J. Math. Phys., Volume 35 (1994) no. 10, p. 5373

[50] J.E. Avron; R. Seiler; B. Simon; J.E. Avron; R. Seiler; B. Simon Homotopy and quantization in condensed matter physics, Phys. Rev. Lett., Volume 65 (1990), p. 2185

Cité par Sources :

Commentaires - Politique