[Principes physiques sous-jacents à lʼeffet Hall quantique]
Dans cette contribution nous présentons une introduction aux principes physiques sous-jacents à lʼeffet Hall quantique. Un aperçu de lʼapproche de théorie des champs à lʼeffet fractionnaire et entier est donné. Lʼaccent est mis sur les mécanismes dʼannulation de lʼanomalie de gauge électromagnétique par les degrés de libertés chiraux présents le long du bord de lʼéchantillon. Les applications de ce formalisme à la conception ou à lʼinterprétation théorique dʼexpériences dʼinterférence sont brièvement exposées.
In this contribution, we present an introduction to the physical principles underlying the quantum Hall effect. The field theoretic approach to the integral and fractional effect is sketched, with some emphasis on the mechanism of electromagnetic gauge anomaly cancellation by chiral degrees of freedom located on the edge of the sample. Applications of this formalism to the design and theoretical interpretation of interference experiments are outlined.
Mot clés : Effet Hall quantique, Théorie de champs effective, Action Chern–Simons, Anomalie chirale
Samuel Bieri 1 ; Jürg Fröhlich 1
@article{CRPHYS_2011__12_4_332_0, author = {Samuel Bieri and J\"urg Fr\"ohlich}, title = {Physical principles underlying the quantum {Hall} effect}, journal = {Comptes Rendus. Physique}, pages = {332--346}, publisher = {Elsevier}, volume = {12}, number = {4}, year = {2011}, doi = {10.1016/j.crhy.2011.02.001}, language = {en}, }
Samuel Bieri; Jürg Fröhlich. Physical principles underlying the quantum Hall effect. Comptes Rendus. Physique, Volume 12 (2011) no. 4, pp. 332-346. doi : 10.1016/j.crhy.2011.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.001/
[1] The Chern–Simons theory and knot polynomials, Comm. Math. Phys., Volume 126 (1989), p. 167
[2] Braid statistics in local quantum theory, Rev. Math. Phys., Volume 2 (1990), p. 251
[3] Universality in quantum Hall systems, Nucl. Phys. B, Volume 354 (1991), p. 369
[4] Large scale physics of the quantum Hall fluid, Nucl. Phys. B, Volume 364 (1991), p. 517
[5] Gauge invariance and current algebra in nonrelativistic many-body theory, Rev. Mod. Phys., Volume 65 (1993), p. 733
[6] Integral quadratic forms, Kac–Moody algebras, and fractional quantum Hall effect. An ADE- classification, J. Stat. Phys., Volume 76 (1994), p. 209
[7] A classification of quantum Hall fluids, J. Stat. Phys., Volume 86 (1995), p. 821
[8] Structuring the set of incompressible quantum Hall fluids, Nucl. Phys. B, Volume 453 (1995), p. 670
[9] New applications of the chiral anomaly (A. Fokas; A. Grigoryan; T. Kibble; B. Zegarlinski, eds.), Mathematical Physics 2000, Imperial College Press, London/Singapore, 2000 | arXiv
[10] Axions, quantum mechanical pumping, and primval magnetic fields, Como 2001 (2002) | arXiv
[11] Universality in quantum Hall systems: coset construction of incompressible states, J. Stat. Phys., Volume 103 (2001), p. 527
[12] Effective field theories for the edge, Phys. Rev. B, Volume 80 (2009), p. 233302 | arXiv
[13] Mach–Zhender interferometry of fractional quantum Hall edge states, Phys. Rev. B, Volume 80 (2009), p. 045319
[14] The Quantum Hall Effect (R. Prange; S.M. Girvin, eds.), Springer-Verlag, New York, 1987
[15] The QHE as an electrical resistance standard, Sém. Poincaré, Volume 64 (2001), pp. 1603-1655
[16] New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980), p. 494
[17] Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982), p. 1559
[18] Quantized Hall conductivity in two dimensions, Phys. Rev. B, Volume 23 (1981), p. 5632
[19] Anomalous QHE: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983), p. 1395
[20] Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, Volume 25 (1982), p. 2185
[21] Fractional quantization of the Hall effect: A hierarchy of incompressible quantum Hall states, Phys. Rev. Lett., Volume 51 (1983), p. 605
[22] Microscopic wave functions for the FQH states at and 2/7, Phys. Rev. B, Volume 34 (1986), p. 3037
[23] Excitation gaps in FQH states: An exact diagonalization study, Phys. Rev. B, Volume 66 (2002), p. 075408
[24] Paired Hall states, Nucl. Phys. B, Volume 374 (1992), p. 567
[25] Resonant tunneling in the quantum Hall regime: measurement of fractional charge, Science, Volume 267 (1995), p. 1010
[26] Observation of the e/3 fractionally charged Laughlin quasi-particle, Phys. Rev. Lett., Volume 79 (1997), p. 2526
[27] Direct observation of a fractional charge, Physica B, Volume 389 (1997) no. 215, p. 162
[28] J. Fröhlich, Lectures in 2001 (partially based on Ref. [2]).
[29] Fault-tolerant quantum computation by anyons, Ann. Phys., Volume 303 (2003), p. 2 (and references therein)
[30] Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., Volume 80 (2008), p. 1083 (and references therein)
[31] Current Algebra and Anomalies, World Scientific, 1985
[32] Chiral Luttinger liquid and the edge excitations in the FQH states, Phys. Rev. B, Volume 41 (1990), p. 12838
[33] Toward classification of conformal theories, Phys. Lett. B, Volume 206 (1988), p. 421
[34] CFT, Springer-Verlag, New York, 1997
[35] Quantum Groups, Quantum Categories and Quantum Field Theory, Lecture Notes in Mathematics, Springer, 1993
[36] Twenty five years of 2d rational CFT, J. Math. Phys., Volume 51 (2010), p. 015210 (and references therein)
[37] Spin or, actually: Spin and quantum statistics, Sém. Poincaré, Volume 11 (2007), p. 1 | arXiv
[38] Kac–Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A, Volume 1 (1986), p. 303
[39] Nonabelions in the FQHE, Nucl. Phys. B, Volume 360 (1991), p. 362
[40] Non-abelian statistics in the FQH states, Phys. Rev. Lett., Volume 66 (1991), p. 802
[41] Two point-contact interferometer for quantum Hall systems, Phys. Rev. B, Volume 55 (1997), p. 2331
[42] Quasi-particle properties from tunneling in the 5/2 FQH state, Science, Volume 320 (2008), p. 899
[43] I.P. Levkivskyi, J. Fröhlich, E.V. Sukhorukov, PRB, submitted for publication; . | arXiv
[44] Finite-bias visibility dependence in an electronic MZ interferometer, Phys. Rev. B, Volume 79 (2009), p. 245324
[45] Resonant dephasing in the electronic MZ interferometer, Phys. Rev. Lett., Volume 99 (2007), p. 156801
[46] Dephasing in the electronic MZ interferometer at filling factor two, Phys. Rev. B, Volume 78 (2008), p. 045322
[47] Noise-induced phase transition in the electronic MZ interferometer, Phys. Rev. Lett., Volume 3 (2009), p. 036801
[48] Topologically massive gauge theories, Ann. Phys., Volume 140 (1982), p. 372
[49] The noncommutative geometry of the QHE, J. Math. Phys., Volume 35 (1994) no. 10, p. 5373
[50] Homotopy and quantization in condensed matter physics, Phys. Rev. Lett., Volume 65 (1990), p. 2185
Cité par Sources :
Commentaires - Politique