Comptes Rendus
Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
[Théorie classique et quantique du refroidissement photothermique en cavité dʼun oscillateur mécanique]
Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 860-870.

Les effets photothermiques permettent un couplage optomécanique très efficace entre degrés de liberté mécaniques et photons. Dans le contexte du refroidissement en cavité dʼun oscillateur mécanique, une question reste ouverte : savoir si lʼon peut atteindre lʼétat quantique fondamental de lʼoscillateur à lʼaide dʼun refroidissement photothermique ? Ici nous répondons à cette question par deux traitements théoriques complémentaires : lʼun classique, lʼautre quantique. Les deux approches nous portent à conclure que : dʼabord lʼétat fondamental peut en effet être atteint par refroidissement photothermique, ensuite il peut être atteint dans un régime de faible désaccord de cavité, ce qui permet à une grande partie des photons incidents dʼentrer dans la cavité.

Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground-state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of incident photons to enter the cavity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2011.02.005
Keywords: Optomechanics, Photothermal, Optical cooling, Quantum limit, Mechanical oscillator, Quantum ground-state
Mot clés : Optomécanique, Photothermique, Refroidissement optique, Limite quantique, Oscillateur mécanique, État quantique fondamental

Juan Restrepo 1 ; Julien Gabelli 2 ; Cristiano Ciuti 1 ; Ivan Favero 1

1 Laboratoire matériaux et phénomènes quantiques, université Paris Diderot, CNRS UMR 7162, 10, rue Alice-Domon-et-Léonie-Duquet, 75013 Paris, France
2 Laboratoire de physique des solides, université Paris-Sud, CNRS UMR 8502, Orsay, France
@article{CRPHYS_2011__12_9-10_860_0,
     author = {Juan Restrepo and Julien Gabelli and Cristiano Ciuti and Ivan Favero},
     title = {Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator},
     journal = {Comptes Rendus. Physique},
     pages = {860--870},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.02.005},
     language = {en},
}
TY  - JOUR
AU  - Juan Restrepo
AU  - Julien Gabelli
AU  - Cristiano Ciuti
AU  - Ivan Favero
TI  - Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 860
EP  - 870
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.02.005
LA  - en
ID  - CRPHYS_2011__12_9-10_860_0
ER  - 
%0 Journal Article
%A Juan Restrepo
%A Julien Gabelli
%A Cristiano Ciuti
%A Ivan Favero
%T Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
%J Comptes Rendus. Physique
%D 2011
%P 860-870
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.02.005
%G en
%F CRPHYS_2011__12_9-10_860_0
Juan Restrepo; Julien Gabelli; Cristiano Ciuti; Ivan Favero. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 860-870. doi : 10.1016/j.crhy.2011.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.005/

[1] I. Favero; K. Karrai Optomechanics of deformable optical cavities, Nature Photon., Volume 3 (2009), p. 201

[2] F. Marquardt; S. Girvin Optomechanics, Physics, Volume 2 (2009), p. 40

[3] M. Aspelmeyer; S. Gröblacher; K. Hammerer; N. Kiesel Quantum optomechanics—throwing a glance, J. Opt. Soc. Am. B, Volume 27 (2010), p. 189

[4] A.D. OʼConnell et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703

[5] J.D. Thompson et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), p. 06715

[6] Y. Park; H. Wan Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nature Phys., Volume 5 (2009), pp. 489-493

[7] S. Gröblacher et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nature Phys., Volume 5 (2009), pp. 485-488

[8] A. Schliesser et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nature Phys., Volume 5 (2009), pp. 509-514

[9] T. Rocheleau; T. Ndukum; C. Macklin; J.B. Hertzberg; A.A. Clerk; K. Schwab Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), p. 72

[10] F. Marquardt; J.P. Chen; A. Clerk; S.M. Girvin Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902

[11] I. Wilson-Rae; N. Nooshi; W. Zwerger; T.J. Kippenberg Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901

[12] C. Genes; D. Vitali; P. Tombesi; S. Gigan; M. Aspelmeyer Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, Volume 77 (2008), p. 033804

[13] A. Dantan; C. Genes; D. Vitali; M. Pinard Self-cooling of a movable mirror to the ground state using radiation pressure, Phys. Rev. A, Volume 77 (2008), p. 011804

[14] C. Höhberger Metzger; K. Karrai Cavity cooling of a microlever, Nature, Volume 432 (2004), p. 1002

[15] K. Karrai; I. Favero; C. Metzger Doppler optomechanics of a photonic crystal, Phys. Rev. Lett., Volume 100 (2008), p. 240801

[16] C. Metzger; I. Favero; A. Ortlieb; K. Karrai Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit, Phys. Rev. B, Volume 78 (2008), p. 035309

[17] G. Jourdan; F. Comin; J. Chevrier Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever, Phys. Rev. Lett., Volume 101 (2008), p. 133904

[18] C. Metzger; M. Ludwig; C. Neuenhahn; A. Ortlieb; I. Favero; K. Karrai; F. Marquardt Self-induced oscillations in an optomechanical system driven by bolometric backaction, Phys. Rev. Lett., Volume 101 (2008), p. 133903

[19] I. Favero et al. Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101

[20] J.G.E. Harris; B.M. Zwickl; A.M. Jayich Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling, Rev. Sci. Instrum., Volume 78 (2007), p. 013107

[21] M. Pinard; A. Dantan Quantum limits of photothermal and radiation pressure cooling of a movable mirror, New J. Phys., Volume 10 (2008), p. 095012

[22] C.K. Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995), p. 2537

[23] C. Cohen-Tannoudji; J. Dupont-Roc; G. Grynberg Processus dʼinteraction entre photons et atomes, 1988 (p. 327)

[24] V.B. Braginsky; M.L. Gorodestky; S.P. Vyatchanin Thermodynamical fluctuations and photo-thermal shot-noise in gravitational wave antennae, Phys. Lett. A, Volume 264 (1999), p. 1

[25] M. Cerdonio; L. Conti; A. Heidmann; M. Pinard Thermoelastic effects at low temperatures and quantum limits in displacements measurements, Phys. Rev. D, Volume 63 (2001), p. 082003

[26] A.A. Clerk; M.H. Devoret; S.M. Girvin; F. Marquardt; R.J. Schoelkopf Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys., Volume 82 (2010), p. 1155

[27] U. Gavish; Y. Imry; Y. Levinson Quantum noise, detailed balance and Kubo formula in non-equilibrium quantum systems, 2002 | arXiv

[28] S. De Liberato, N. Lambert, F. Nori, Quantum limit of photothermal cooling, , Phys. Rev. A (2011), in press. | arXiv

Cité par Sources :

Commentaires - Politique