[Théorie classique et quantique du refroidissement photothermique en cavité dʼun oscillateur mécanique]
Les effets photothermiques permettent un couplage optomécanique très efficace entre degrés de liberté mécaniques et photons. Dans le contexte du refroidissement en cavité dʼun oscillateur mécanique, une question reste ouverte : savoir si lʼon peut atteindre lʼétat quantique fondamental de lʼoscillateur à lʼaide dʼun refroidissement photothermique ? Ici nous répondons à cette question par deux traitements théoriques complémentaires : lʼun classique, lʼautre quantique. Les deux approches nous portent à conclure que : dʼabord lʼétat fondamental peut en effet être atteint par refroidissement photothermique, ensuite il peut être atteint dans un régime de faible désaccord de cavité, ce qui permet à une grande partie des photons incidents dʼentrer dans la cavité.
Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground-state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of incident photons to enter the cavity.
Accepté le :
Publié le :
Mots-clés : Optomécanique, Photothermique, Refroidissement optique, Limite quantique, Oscillateur mécanique, État quantique fondamental
Juan Restrepo 1 ; Julien Gabelli 2 ; Cristiano Ciuti 1 ; Ivan Favero 1
@article{CRPHYS_2011__12_9-10_860_0, author = {Juan Restrepo and Julien Gabelli and Cristiano Ciuti and Ivan Favero}, title = {Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator}, journal = {Comptes Rendus. Physique}, pages = {860--870}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.02.005}, language = {en}, }
TY - JOUR AU - Juan Restrepo AU - Julien Gabelli AU - Cristiano Ciuti AU - Ivan Favero TI - Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator JO - Comptes Rendus. Physique PY - 2011 SP - 860 EP - 870 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.02.005 LA - en ID - CRPHYS_2011__12_9-10_860_0 ER -
%0 Journal Article %A Juan Restrepo %A Julien Gabelli %A Cristiano Ciuti %A Ivan Favero %T Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator %J Comptes Rendus. Physique %D 2011 %P 860-870 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.02.005 %G en %F CRPHYS_2011__12_9-10_860_0
Juan Restrepo; Julien Gabelli; Cristiano Ciuti; Ivan Favero. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus. Physique, Nano- and micro-optomechanical systems, Volume 12 (2011) no. 9-10, pp. 860-870. doi : 10.1016/j.crhy.2011.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.005/
[1] Optomechanics of deformable optical cavities, Nature Photon., Volume 3 (2009), p. 201
[2] Optomechanics, Physics, Volume 2 (2009), p. 40
[3] Quantum optomechanics—throwing a glance, J. Opt. Soc. Am. B, Volume 27 (2010), p. 189
[4] et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703
[5] et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), p. 06715
[6] Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nature Phys., Volume 5 (2009), pp. 489-493
[7] et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nature Phys., Volume 5 (2009), pp. 485-488
[8] et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nature Phys., Volume 5 (2009), pp. 509-514
[9] Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), p. 72
[10] Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902
[11] Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901
[12] Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, Volume 77 (2008), p. 033804
[13] Self-cooling of a movable mirror to the ground state using radiation pressure, Phys. Rev. A, Volume 77 (2008), p. 011804
[14] Cavity cooling of a microlever, Nature, Volume 432 (2004), p. 1002
[15] Doppler optomechanics of a photonic crystal, Phys. Rev. Lett., Volume 100 (2008), p. 240801
[16] Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit, Phys. Rev. B, Volume 78 (2008), p. 035309
[17] Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever, Phys. Rev. Lett., Volume 101 (2008), p. 133904
[18] Self-induced oscillations in an optomechanical system driven by bolometric backaction, Phys. Rev. Lett., Volume 101 (2008), p. 133903
[19] et al. Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101
[20] Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling, Rev. Sci. Instrum., Volume 78 (2007), p. 013107
[21] Quantum limits of photothermal and radiation pressure cooling of a movable mirror, New J. Phys., Volume 10 (2008), p. 095012
[22] Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995), p. 2537
[23] Processus dʼinteraction entre photons et atomes, 1988 (p. 327)
[24] Thermodynamical fluctuations and photo-thermal shot-noise in gravitational wave antennae, Phys. Lett. A, Volume 264 (1999), p. 1
[25] Thermoelastic effects at low temperatures and quantum limits in displacements measurements, Phys. Rev. D, Volume 63 (2001), p. 082003
[26] Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys., Volume 82 (2010), p. 1155
[27] Quantum noise, detailed balance and Kubo formula in non-equilibrium quantum systems, 2002 | arXiv
[28] S. De Liberato, N. Lambert, F. Nori, Quantum limit of photothermal cooling, , Phys. Rev. A (2011), in press. | arXiv
- Photothermally-induced nonlinearity in a quantum multimode optical system, Optics Laser Technology, Volume 168 (2024), p. 109900 | DOI:10.1016/j.optlastec.2023.109900
- Thermal relaxation time and photothermal optomechanical force in sliced photonic crystal silicon nanobeams, Optics Express, Volume 32 (2024) no. 21, p. 36824 | DOI:10.1364/oe.533897
- Engineered entropic forces allow ultrastrong dynamical backaction, Science Advances, Volume 9 (2023) no. 21 | DOI:10.1126/sciadv.ade3591
- Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal, Optics Express, Volume 30 (2022) no. 23, p. 42579 | DOI:10.1364/oe.474621
- Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity, PRX Quantum, Volume 3 (2022) no. 2 | DOI:10.1103/prxquantum.3.020309
- Floquet Control of Optomechanical Bistability in Multimode Systems, Physical Review Letters, Volume 129 (2022) no. 12 | DOI:10.1103/physrevlett.129.123603
- A multiphysics model for ultra-high frequency optomechanical resonators optically actuated and detected in the oscillating mode, APL Photonics, Volume 6 (2021) no. 8, p. 086111 | DOI:10.1063/5.0050061
- Global bifurcations and homoclinic chaos in nonlinear panel optomechanical resonators under combined thermal and radiation stresses, Nonlinear Dynamics, Volume 103 (2021) no. 4, p. 3371 | DOI:10.1007/s11071-020-05977-w
- Mode locking in an optomechanical cavity, EPL (Europhysics Letters), Volume 129 (2020) no. 2, p. 24005 | DOI:10.1209/0295-5075/129/24005
- Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System, International Journal of Theoretical Physics, Volume 59 (2020) no. 2, p. 454 | DOI:10.1007/s10773-019-04339-6
- Thermal decoherence and laser cooling of Kerr microresonator solitons, Nature Photonics, Volume 14 (2020) no. 8, p. 480 | DOI:10.1038/s41566-020-0651-8
- Force Sensing with an Optomechanical Self-Oscillator, Physical Review Applied, Volume 14 (2020) no. 2 | DOI:10.1103/physrevapplied.14.024079
- Photonic Excitation of a Micromechanical Cantilever in Electrostatic Fields, Physical Review Letters, Volume 125 (2020) no. 25 | DOI:10.1103/physrevlett.125.254301
- Optomechanical Platform for Probing Two-Dimensional Quantum Fluids, Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics (2020), p. 25 | DOI:10.1007/978-3-030-52766-2_2
- Light-Mediated Control of Superfluid Flow, Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics (2020), p. 55 | DOI:10.1007/978-3-030-52766-2_3
- High frequency optomechanical disk resonators in III–V ternary semiconductors: erratum, Optics Express, Volume 27 (2019) no. 9, p. 12182 | DOI:10.1364/oe.27.012182
- Floquet dynamics in the quantum measurement of mechanical motion, Physical Review A, Volume 100 (2019) no. 5 | DOI:10.1103/physreva.100.053852
- Dueling dynamical backaction in a cryogenic optomechanical cavity, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053803
- Self-excited oscillation and synchronization of an on-fiber optomechanical cavity, Physical Review E, Volume 100 (2019) no. 3 | DOI:10.1103/physreve.100.032202
- Quantum Optomechanics in a Liquid, Physical Review Letters, Volume 122 (2019) no. 15 | DOI:10.1103/physrevlett.122.153601
- Monolayer Graphene as Dissipative Membrane in an Optical Resonator, Exploring the World with the Laser (2018), p. 617 | DOI:10.1007/978-3-319-64346-5_33
- Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities, Physical Review B, Volume 97 (2018) no. 19 | DOI:10.1103/physrevb.97.195306
- Quantum well photoelastic comb for ultra-high frequency cavity optomechanics, Quantum Science and Technology, Volume 4 (2018) no. 1, p. 014011 | DOI:10.1088/2058-9565/aaf818
- Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires, Nano Letters, Volume 17 (2017) no. 7, p. 3995 | DOI:10.1021/acs.nanolett.6b04769
- Enhanced photothermal cooling of nanowires, Quantum Science and Technology, Volume 2 (2017) no. 3, p. 034005 | DOI:10.1088/2058-9565/aa7645
- Monolayer graphene as dissipative membrane in an optical resonator, Applied Physics B, Volume 122 (2016) no. 12 | DOI:10.1007/s00340-016-6564-z
- Theory of Optomechanics, Classical Pendulum Feels Quantum Back-Action (2016), p. 13 | DOI:10.1007/978-4-431-55882-8_2
- Experimental Results, Classical Pendulum Feels Quantum Back-Action (2016), p. 81 | DOI:10.1007/978-4-431-55882-8_6
- Sensing dispersive and dissipative forces by an optomechanical cavity, EPL (Europhysics Letters), Volume 115 (2016) no. 1, p. 14001 | DOI:10.1209/0295-5075/115/14001
- Laser cooling and control of excitations in superfluid helium, Nature Physics, Volume 12 (2016) no. 8, p. 788 | DOI:10.1038/nphys3714
- Devil's staircase in an optomechanical cavity, Physical Review E, Volume 93 (2016) no. 2 | DOI:10.1103/physreve.93.023007
- Microphotonic Forces from Superfluid Flow, Physical Review X, Volume 6 (2016) no. 2 | DOI:10.1103/physrevx.6.021012
- Equations of a moving mirror and the electromagnetic field, Physica Scripta, Volume 90 (2015) no. 6, p. 068011 | DOI:10.1088/0031-8949/90/6/068011
- Time-resolved phase-space tomography of an optomechanical cavity, Physical Review A, Volume 91 (2015) no. 4 | DOI:10.1103/physreva.91.043829
- Synchronization in an optomechanical cavity, Physical Review E, Volume 91 (2015) no. 3 | DOI:10.1103/physreve.91.032910
- Single-Crystal Diamond Nanobeam Waveguide Optomechanics, Physical Review X, Volume 5 (2015) no. 4 | DOI:10.1103/physrevx.5.041051
- Arrays of optomechanical systems, Quantum Optomechanics (2015), p. 296 | DOI:10.1201/b19379-13
- Self-oscillations of radiation polarization direction in fiber lasers with micro-optomechanical resonance structures, Technical Physics Letters, Volume 41 (2015) no. 4, p. 405 | DOI:10.1134/s1063785015040215
- Mechanical Resonators in the Middle of an Optical Cavity, Cavity Optomechanics (2014), p. 83 | DOI:10.1007/978-3-642-55312-7_5
- Classical dynamics of a moving mirror due to radiation pressure, Journal of Physics: Conference Series, Volume 512 (2014), p. 012005 | DOI:10.1088/1742-6596/512/1/012005
- Multimode laser cooling and ultra-high sensitivity force sensing with nanowires, Nature Communications, Volume 5 (2014) no. 1 | DOI:10.1038/ncomms5663
- Classical dynamics of a thin moving mirror interacting with a laser, Physical Review A, Volume 89 (2014) no. 6 | DOI:10.1103/physreva.89.063807
- Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation, Physical Review A, Volume 90 (2014) no. 3 | DOI:10.1103/physreva.90.033818
- Cavity optomechanics, Reviews of Modern Physics, Volume 86 (2014) no. 4, p. 1391 | DOI:10.1103/revmodphys.86.1391
- Optomechanical Cavity With a Buckled Mirror, Journal of Microelectromechanical Systems, Volume 22 (2013) no. 2, p. 430 | DOI:10.1109/jmems.2012.2226931
- Collectively enhanced optomechanical coupling in periodic arrays of scatterers, Physical Review A, Volume 88 (2013) no. 5 | DOI:10.1103/physreva.88.053803
- Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics, Physical Review Letters, Volume 110 (2013) no. 15 | DOI:10.1103/physrevlett.110.153606
- Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems, Nano Letters, Volume 12 (2012) no. 9, p. 4681 | DOI:10.1021/nl302036x
- Hot electrons but cool vibrations, Nature Physics, Volume 8 (2012) no. 2, p. 110 | DOI:10.1038/nphys2215
- Optical cavity cooling of mechanical modes of a semiconductor nanomembrane, Nature Physics, Volume 8 (2012) no. 2, p. 168 | DOI:10.1038/nphys2196
- Exciton-mediated photothermal cooling in GaAs membranes, New Journal of Physics, Volume 14 (2012) no. 8, p. 085024 | DOI:10.1088/1367-2630/14/8/085024
- Improving the optomechanical entanglement and cooling by photothermal force, Physical Review A, Volume 85 (2012) no. 6 | DOI:10.1103/physreva.85.063839
- Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force, Physical Review A, Volume 86 (2012) no. 4 | DOI:10.1103/physreva.86.043803
- Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects, Physics Letters A, Volume 376 (2012) no. 45, p. 2955 | DOI:10.1016/j.physleta.2012.08.049
- Quantum noise in photothermal cooling, Physical Review A, Volume 83 (2011) no. 3 | DOI:10.1103/physreva.83.033809
Cité par 55 documents. Sources : Crossref
Commentaires - Politique