Comptes Rendus
Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
[Théorie classique et quantique du refroidissement photothermique en cavité dʼun oscillateur mécanique]
Comptes Rendus. Physique, Nano- and micro-optomechanical systems, Volume 12 (2011) no. 9-10, pp. 860-870.

Les effets photothermiques permettent un couplage optomécanique très efficace entre degrés de liberté mécaniques et photons. Dans le contexte du refroidissement en cavité dʼun oscillateur mécanique, une question reste ouverte : savoir si lʼon peut atteindre lʼétat quantique fondamental de lʼoscillateur à lʼaide dʼun refroidissement photothermique ? Ici nous répondons à cette question par deux traitements théoriques complémentaires : lʼun classique, lʼautre quantique. Les deux approches nous portent à conclure que : dʼabord lʼétat fondamental peut en effet être atteint par refroidissement photothermique, ensuite il peut être atteint dans un régime de faible désaccord de cavité, ce qui permet à une grande partie des photons incidents dʼentrer dans la cavité.

Photothermal effects allow very efficient optomechanical coupling between mechanical degrees of freedom and photons. In the context of cavity cooling of a mechanical oscillator, the question of if the quantum ground-state of the oscillator can be reached using photothermal back-action has been debated and remains an open question. Here we address this problem by complementary classical and quantum calculations. Both lead us to conclude that: first, the ground-state can indeed be reached using photothermal cavity cooling, second, it can be reached in a regime where the cavity detuning is small allowing a large amount of incident photons to enter the cavity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2011.02.005
Keywords: Optomechanics, Photothermal, Optical cooling, Quantum limit, Mechanical oscillator, Quantum ground-state
Mots-clés : Optomécanique, Photothermique, Refroidissement optique, Limite quantique, Oscillateur mécanique, État quantique fondamental

Juan Restrepo 1 ; Julien Gabelli 2 ; Cristiano Ciuti 1 ; Ivan Favero 1

1 Laboratoire matériaux et phénomènes quantiques, université Paris Diderot, CNRS UMR 7162, 10, rue Alice-Domon-et-Léonie-Duquet, 75013 Paris, France
2 Laboratoire de physique des solides, université Paris-Sud, CNRS UMR 8502, Orsay, France
@article{CRPHYS_2011__12_9-10_860_0,
     author = {Juan Restrepo and Julien Gabelli and Cristiano Ciuti and Ivan Favero},
     title = {Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator},
     journal = {Comptes Rendus. Physique},
     pages = {860--870},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.02.005},
     language = {en},
}
TY  - JOUR
AU  - Juan Restrepo
AU  - Julien Gabelli
AU  - Cristiano Ciuti
AU  - Ivan Favero
TI  - Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 860
EP  - 870
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.02.005
LA  - en
ID  - CRPHYS_2011__12_9-10_860_0
ER  - 
%0 Journal Article
%A Juan Restrepo
%A Julien Gabelli
%A Cristiano Ciuti
%A Ivan Favero
%T Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator
%J Comptes Rendus. Physique
%D 2011
%P 860-870
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.02.005
%G en
%F CRPHYS_2011__12_9-10_860_0
Juan Restrepo; Julien Gabelli; Cristiano Ciuti; Ivan Favero. Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus. Physique, Nano- and micro-optomechanical systems, Volume 12 (2011) no. 9-10, pp. 860-870. doi : 10.1016/j.crhy.2011.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.005/

[1] I. Favero; K. Karrai Optomechanics of deformable optical cavities, Nature Photon., Volume 3 (2009), p. 201

[2] F. Marquardt; S. Girvin Optomechanics, Physics, Volume 2 (2009), p. 40

[3] M. Aspelmeyer; S. Gröblacher; K. Hammerer; N. Kiesel Quantum optomechanics—throwing a glance, J. Opt. Soc. Am. B, Volume 27 (2010), p. 189

[4] A.D. OʼConnell et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), pp. 697-703

[5] J.D. Thompson et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), p. 06715

[6] Y. Park; H. Wan Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nature Phys., Volume 5 (2009), pp. 489-493

[7] S. Gröblacher et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nature Phys., Volume 5 (2009), pp. 485-488

[8] A. Schliesser et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nature Phys., Volume 5 (2009), pp. 509-514

[9] T. Rocheleau; T. Ndukum; C. Macklin; J.B. Hertzberg; A.A. Clerk; K. Schwab Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), p. 72

[10] F. Marquardt; J.P. Chen; A. Clerk; S.M. Girvin Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902

[11] I. Wilson-Rae; N. Nooshi; W. Zwerger; T.J. Kippenberg Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901

[12] C. Genes; D. Vitali; P. Tombesi; S. Gigan; M. Aspelmeyer Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, Volume 77 (2008), p. 033804

[13] A. Dantan; C. Genes; D. Vitali; M. Pinard Self-cooling of a movable mirror to the ground state using radiation pressure, Phys. Rev. A, Volume 77 (2008), p. 011804

[14] C. Höhberger Metzger; K. Karrai Cavity cooling of a microlever, Nature, Volume 432 (2004), p. 1002

[15] K. Karrai; I. Favero; C. Metzger Doppler optomechanics of a photonic crystal, Phys. Rev. Lett., Volume 100 (2008), p. 240801

[16] C. Metzger; I. Favero; A. Ortlieb; K. Karrai Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit, Phys. Rev. B, Volume 78 (2008), p. 035309

[17] G. Jourdan; F. Comin; J. Chevrier Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever, Phys. Rev. Lett., Volume 101 (2008), p. 133904

[18] C. Metzger; M. Ludwig; C. Neuenhahn; A. Ortlieb; I. Favero; K. Karrai; F. Marquardt Self-induced oscillations in an optomechanical system driven by bolometric backaction, Phys. Rev. Lett., Volume 101 (2008), p. 133903

[19] I. Favero et al. Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101

[20] J.G.E. Harris; B.M. Zwickl; A.M. Jayich Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: Optical characterization and laser cooling, Rev. Sci. Instrum., Volume 78 (2007), p. 013107

[21] M. Pinard; A. Dantan Quantum limits of photothermal and radiation pressure cooling of a movable mirror, New J. Phys., Volume 10 (2008), p. 095012

[22] C.K. Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995), p. 2537

[23] C. Cohen-Tannoudji; J. Dupont-Roc; G. Grynberg Processus dʼinteraction entre photons et atomes, 1988 (p. 327)

[24] V.B. Braginsky; M.L. Gorodestky; S.P. Vyatchanin Thermodynamical fluctuations and photo-thermal shot-noise in gravitational wave antennae, Phys. Lett. A, Volume 264 (1999), p. 1

[25] M. Cerdonio; L. Conti; A. Heidmann; M. Pinard Thermoelastic effects at low temperatures and quantum limits in displacements measurements, Phys. Rev. D, Volume 63 (2001), p. 082003

[26] A.A. Clerk; M.H. Devoret; S.M. Girvin; F. Marquardt; R.J. Schoelkopf Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys., Volume 82 (2010), p. 1155

[27] U. Gavish; Y. Imry; Y. Levinson Quantum noise, detailed balance and Kubo formula in non-equilibrium quantum systems, 2002 | arXiv

[28] S. De Liberato, N. Lambert, F. Nori, Quantum limit of photothermal cooling, , Phys. Rev. A (2011), in press. | arXiv

  • Akhtar Munir; Muqaddar Abbas; Ziauddin; Wu-Ming Liu; Gao Xianlong; Pei Zhang Photothermally-induced nonlinearity in a quantum multimode optical system, Optics Laser Technology, Volume 168 (2024), p. 109900 | DOI:10.1016/j.optlastec.2023.109900
  • Cliona Shakespeare; Arvind S. Kumar; Juha T. Muhonen Thermal relaxation time and photothermal optomechanical force in sliced photonic crystal silicon nanobeams, Optics Express, Volume 32 (2024) no. 21, p. 36824 | DOI:10.1364/oe.533897
  • Andreas Sawadsky; Raymond A. Harrison; Glen I. Harris; Walter W. Wasserman; Yasmine L. Sfendla; Warwick P. Bowen; Christopher G. Baker Engineered entropic forces allow ultrastrong dynamical backaction, Science Advances, Volume 9 (2023) no. 21 | DOI:10.1126/sciadv.ade3591
  • Sotatsu Otabe; Kentaro Komori; Ken-ichi Harada; Kaido Suzuki; Yuta Michimura; Kentaro Somiya Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal, Optics Express, Volume 30 (2022) no. 23, p. 42579 | DOI:10.1364/oe.474621
  • Liu Qiu; Guanhao Huang; Itay Shomroni; Jiahe Pan; Paul Seidler; Tobias J. Kippenberg Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity, PRX Quantum, Volume 3 (2022) no. 2 | DOI:10.1103/prxquantum.3.020309
  • Karl Pelka; Guilhem Madiot; Rémy Braive; André Xuereb Floquet Control of Optomechanical Bistability in Multimode Systems, Physical Review Letters, Volume 129 (2022) no. 12 | DOI:10.1103/physrevlett.129.123603
  • S. Sbarra; P. E. Allain; S. Suffit; A. Lemaître; I. Favero A multiphysics model for ultra-high frequency optomechanical resonators optically actuated and detected in the oscillating mode, APL Photonics, Volume 6 (2021) no. 8, p. 086111 | DOI:10.1063/5.0050061
  • E. Hollander; O. Gottlieb Global bifurcations and homoclinic chaos in nonlinear panel optomechanical resonators under combined thermal and radiation stresses, Nonlinear Dynamics, Volume 103 (2021) no. 4, p. 3371 | DOI:10.1007/s11071-020-05977-w
  • Eyal Buks; Roei Levi; Ivar Martin Mode locking in an optomechanical cavity, EPL (Europhysics Letters), Volume 129 (2020) no. 2, p. 24005 | DOI:10.1209/0295-5075/129/24005
  • Qingxia Mu; Chao Lang; Peiying Lin Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System, International Journal of Theoretical Physics, Volume 59 (2020) no. 2, p. 454 | DOI:10.1007/s10773-019-04339-6
  • Tara E. Drake; Jordan R. Stone; Travis C. Briles; Scott B. Papp Thermal decoherence and laser cooling of Kerr microresonator solitons, Nature Photonics, Volume 14 (2020) no. 8, p. 480 | DOI:10.1038/s41566-020-0651-8
  • Biswarup Guha; Pierre Etienne Allain; Aristide Lemaître; Giuseppe Leo; Ivan Favero Force Sensing with an Optomechanical Self-Oscillator, Physical Review Applied, Volume 14 (2020) no. 2 | DOI:10.1103/physrevapplied.14.024079
  • A. Barsella; M. A. Hurier; M. D. Pichois; M. Vomir; H. Hasan; L. Mager; B. Donnio; J. L. Gallani; M. V. Rastei Photonic Excitation of a Micromechanical Cantilever in Electrostatic Fields, Physical Review Letters, Volume 125 (2020) no. 25 | DOI:10.1103/physrevlett.125.254301
  • Yauhen Sachkou Optomechanical Platform for Probing Two-Dimensional Quantum Fluids, Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics (2020), p. 25 | DOI:10.1007/978-3-030-52766-2_2
  • Yauhen Sachkou Light-Mediated Control of Superfluid Flow, Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics (2020), p. 55 | DOI:10.1007/978-3-030-52766-2_3
  • Biswarup Guha; Silvia Mariani; Aristide Lemaître; Sylvain Combrié; Giuseppe Leo; Ivan Favero High frequency optomechanical disk resonators in III–V ternary semiconductors: erratum, Optics Express, Volume 27 (2019) no. 9, p. 12182 | DOI:10.1364/oe.27.012182
  • Liu Qiu; Itay Shomroni; Marie A. Ioannou; Nicolas Piro; Daniel Malz; Andreas Nunnenkamp; Tobias J. Kippenberg Floquet dynamics in the quantum measurement of mechanical motion, Physical Review A, Volume 100 (2019) no. 5 | DOI:10.1103/physreva.100.053852
  • B. D. Hauer; T. J. Clark; P. H. Kim; C. Doolin; J. P. Davis Dueling dynamical backaction in a cryogenic optomechanical cavity, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053803
  • Eyal Buks; Ivar Martin Self-excited oscillation and synchronization of an on-fiber optomechanical cavity, Physical Review E, Volume 100 (2019) no. 3 | DOI:10.1103/physreve.100.032202
  • A. B. Shkarin; A. D. Kashkanova; C. D. Brown; S. Garcia; K. Ott; J. Reichel; J. G. E. Harris Quantum Optomechanics in a Liquid, Physical Review Letters, Volume 122 (2019) no. 15 | DOI:10.1103/physrevlett.122.153601
  • Hendrik M. Meyer; Moritz Breyer; Michael Köhl Monolayer Graphene as Dissipative Membrane in an Optical Resonator, Exploring the World with the Laser (2018), p. 617 | DOI:10.1007/978-3-319-64346-5_33
  • V. Villafañe; P. Sesin; P. Soubelet; S. Anguiano; A. E. Bruchhausen; G. Rozas; C. Gomez Carbonell; A. Lemaître; A. Fainstein Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities, Physical Review B, Volume 97 (2018) no. 19 | DOI:10.1103/physrevb.97.195306
  • V Villafañe; S Anguiano; A E Bruchhausen; G Rozas; J Bloch; C Gomez Carbonell; A Lemaître; A Fainstein Quantum well photoelastic comb for ultra-high frequency cavity optomechanics, Quantum Science and Technology, Volume 4 (2018) no. 1, p. 014011 | DOI:10.1088/2058-9565/aaf818
  • Roberto De Alba; T. S. Abhilash; Richard H. Rand; Harold G. Craighead; Jeevak M. Parpia Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires, Nano Letters, Volume 17 (2017) no. 7, p. 3995 | DOI:10.1021/acs.nanolett.6b04769
  • G Guccione; M Hosseini; A Mirzaei; H J Slatyer; B C Buchler; P K Lam Enhanced photothermal cooling of nanowires, Quantum Science and Technology, Volume 2 (2017) no. 3, p. 034005 | DOI:10.1088/2058-9565/aa7645
  • Hendrik M. Meyer; Moritz Breyer; Michael Köhl Monolayer graphene as dissipative membrane in an optical resonator, Applied Physics B, Volume 122 (2016) no. 12 | DOI:10.1007/s00340-016-6564-z
  • Nobuyuki Matsumoto Theory of Optomechanics, Classical Pendulum Feels Quantum Back-Action (2016), p. 13 | DOI:10.1007/978-4-431-55882-8_2
  • Nobuyuki Matsumoto Experimental Results, Classical Pendulum Feels Quantum Back-Action (2016), p. 81 | DOI:10.1007/978-4-431-55882-8_6
  • Oren Suchoi; Eyal Buks Sensing dispersive and dissipative forces by an optomechanical cavity, EPL (Europhysics Letters), Volume 115 (2016) no. 1, p. 14001 | DOI:10.1209/0295-5075/115/14001
  • G. I. Harris; D. L. McAuslan; E. Sheridan; Y. Sachkou; C. Baker; W. P. Bowen Laser cooling and control of excitations in superfluid helium, Nature Physics, Volume 12 (2016) no. 8, p. 788 | DOI:10.1038/nphys3714
  • Hui Wang; Yuvaraj Dhayalan; Eyal Buks Devil's staircase in an optomechanical cavity, Physical Review E, Volume 93 (2016) no. 2 | DOI:10.1103/physreve.93.023007
  • D. L. McAuslan; G. I. Harris; C. Baker; Y. Sachkou; X. He; E. Sheridan; W. P. Bowen Microphotonic Forces from Superfluid Flow, Physical Review X, Volume 6 (2016) no. 2 | DOI:10.1103/physrevx.6.021012
  • Luis Octavio Castaños; Ricardo Weder Equations of a moving mirror and the electromagnetic field, Physica Scripta, Volume 90 (2015) no. 6, p. 068011 | DOI:10.1088/0031-8949/90/6/068011
  • Oren Suchoi; Keren Shlomi; Lior Ella; Eyal Buks Time-resolved phase-space tomography of an optomechanical cavity, Physical Review A, Volume 91 (2015) no. 4 | DOI:10.1103/physreva.91.043829
  • Keren Shlomi; D. Yuvaraj; Ilya Baskin; Oren Suchoi; Roni Winik; Eyal Buks Synchronization in an optomechanical cavity, Physical Review E, Volume 91 (2015) no. 3 | DOI:10.1103/physreve.91.032910
  • Behzad Khanaliloo; Harishankar Jayakumar; Aaron C. Hryciw; David P. Lake; Hamidreza Kaviani; Paul E. Barclay Single-Crystal Diamond Nanobeam Waveguide Optomechanics, Physical Review X, Volume 5 (2015) no. 4 | DOI:10.1103/physrevx.5.041051
  • Arrays of optomechanical systems, Quantum Optomechanics (2015), p. 296 | DOI:10.1201/b19379-13
  • F. A. Egorov Self-oscillations of radiation polarization direction in fiber lasers with micro-optomechanical resonance structures, Technical Physics Letters, Volume 41 (2015) no. 4, p. 405 | DOI:10.1134/s1063785015040215
  • Ivan Favero; Jack Sankey; Eva M. Weig Mechanical Resonators in the Middle of an Optical Cavity, Cavity Optomechanics (2014), p. 83 | DOI:10.1007/978-3-642-55312-7_5
  • L O Castaños; R Weder Classical dynamics of a moving mirror due to radiation pressure, Journal of Physics: Conference Series, Volume 512 (2014), p. 012005 | DOI:10.1088/1742-6596/512/1/012005
  • Mahdi Hosseini; Giovanni Guccione; Harry J. Slatyer; Ben C. Buchler; Ping Koy Lam Multimode laser cooling and ultra-high sensitivity force sensing with nanowires, Nature Communications, Volume 5 (2014) no. 1 | DOI:10.1038/ncomms5663
  • L. O. Castaños; R. Weder Classical dynamics of a thin moving mirror interacting with a laser, Physical Review A, Volume 89 (2014) no. 6 | DOI:10.1103/physreva.89.063807
  • Oren Suchoi; Lior Ella; Oleg Shtempluk; Eyal Buks Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation, Physical Review A, Volume 90 (2014) no. 3 | DOI:10.1103/physreva.90.033818
  • Markus Aspelmeyer; Tobias J. Kippenberg; Florian Marquardt Cavity optomechanics, Reviews of Modern Physics, Volume 86 (2014) no. 4, p. 1391 | DOI:10.1103/revmodphys.86.1391
  • D. Yuvaraj; M. B. Kadam; Oleg Shtempluck; Eyal Buks Optomechanical Cavity With a Buckled Mirror, Journal of Microelectromechanical Systems, Volume 22 (2013) no. 2, p. 430 | DOI:10.1109/jmems.2012.2226931
  • André Xuereb; Claudiu Genes; Aurélien Dantan Collectively enhanced optomechanical coupling in periodic arrays of scatterers, Physical Review A, Volume 88 (2013) no. 5 | DOI:10.1103/physreva.88.053803
  • Yong-Chun Liu; Yun-Feng Xiao; Xingsheng Luan; Chee Wei Wong Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics, Physical Review Letters, Volume 110 (2013) no. 15 | DOI:10.1103/physrevlett.110.153606
  • Robert A. Barton; Isaac R. Storch; Vivekananda P. Adiga; Reyu Sakakibara; Benjamin R. Cipriany; B. Ilic; Si Ping Wang; Peijie Ong; Paul L. McEuen; Jeevak M. Parpia; Harold G. Craighead Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems, Nano Letters, Volume 12 (2012) no. 9, p. 4681 | DOI:10.1021/nl302036x
  • Andrew Armour Hot electrons but cool vibrations, Nature Physics, Volume 8 (2012) no. 2, p. 110 | DOI:10.1038/nphys2215
  • K. Usami; A. Naesby; T. Bagci; B. Melholt Nielsen; J. Liu; S. Stobbe; P. Lodahl; E. S. Polzik Optical cavity cooling of mechanical modes of a semiconductor nanomembrane, Nature Physics, Volume 8 (2012) no. 2, p. 168 | DOI:10.1038/nphys2196
  • André Xuereb; Koji Usami; Andreas Naesby; Eugene S Polzik; Klemens Hammerer Exciton-mediated photothermal cooling in GaAs membranes, New Journal of Physics, Volume 14 (2012) no. 8, p. 085024 | DOI:10.1088/1367-2630/14/8/085024
  • Mehdi Abdi; Ali Reza Bahrampour Improving the optomechanical entanglement and cooling by photothermal force, Physical Review A, Volume 85 (2012) no. 6 | DOI:10.1103/physreva.85.063839
  • M. Abdi; A. R. Bahrampour; D. Vitali Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force, Physical Review A, Volume 86 (2012) no. 4 | DOI:10.1103/physreva.86.043803
  • M. Abdi; A.R. Bahrampour Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects, Physics Letters A, Volume 376 (2012) no. 45, p. 2955 | DOI:10.1016/j.physleta.2012.08.049
  • Simone De Liberato; Neill Lambert; Franco Nori Quantum noise in photothermal cooling, Physical Review A, Volume 83 (2011) no. 3 | DOI:10.1103/physreva.83.033809

Cité par 55 documents. Sources : Crossref

Commentaires - Politique