[Étude de la structure du gap des supraconducteurs à base de fer par la longueur de pénétration magnétique]
Cet article passe en revue des expériences visant à déterminer la structure du gap supraconducteur dans les supraconducteurs à base de fer. Il se focalise sur les informations obtenues par des mesures de la longueur de pénétration magnétique et de sa dépendance en température, mais les propriétés obtenues par dʼautres moyens de mesures sont aussi examinées, en particulier la conductivité thermique. Lʼarticle comprend une description théorique de base sur les types de structures de gap suggérées pour les supraconducteurs à base de fer, ainsi que la théorie générale de la longueur de pénétration dans les supraconducteurs conventionnels et non conventionnels. Lʼeffet de la diffusion des impuretés sur chacune des structures de gap candidates, important pour lʼinterprétation des données, sera également analysé. Les données de longueurs de pénétration des monocristaux des composés suivants sont examinées : SmFeAsO0.8F0.2, FeTe0.5Se0.5, LaFePO, KFe2As2 et BaFe2(As0.67P0.33)2 ; des matériaux tels que BaFe2As2 dopé par K et Co seront aussi discutés.
This article reviews experiments to determine the structure of the superconducting gap in the iron-based superconductors. It focuses on insights provided by measurements of the temperature dependence of magnetic penetration depth but also discusses the information provided by other measurements especially thermal conductivity. The article includes background theory on the types of gap structure suggested for the iron-based superconductors as well as the general theory of penetration depth in conventional and unconventional superconductors. The effect of impurity scattering on each candidate gap structure is important for the interpretation of data and so will also be discussed. Penetration depth data for single crystals of the following compounds is reviewed: SmFeAsO0.8F0.2, FeTe0.5Se0.5, LaFePO, KFe2As2 and BaFe2(As0.67P0.33)2 along with discussion on related materials such as K- and Co-doped BaFe2As2.
Mot clés : Supraconducteurs à base de fer, Supraconducteurs fer-pnictide, Structure de gap, Longeur de pénétration magnétique
Antony Carrington 1
@article{CRPHYS_2011__12_5-6_502_0, author = {Antony Carrington}, title = {Studies of the gap structure of iron-based superconductors using magnetic penetration depth}, journal = {Comptes Rendus. Physique}, pages = {502--514}, publisher = {Elsevier}, volume = {12}, number = {5-6}, year = {2011}, doi = {10.1016/j.crhy.2011.03.001}, language = {en}, }
Antony Carrington. Studies of the gap structure of iron-based superconductors using magnetic penetration depth. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 502-514. doi : 10.1016/j.crhy.2011.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.001/
[1] Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6 + δ as revealed by quantum oscillations, Phys. Rev. B, Volume 82 (2010) no. 14, p. 140501(R)
[2] A detailed de Haas–van Alphen effect study of the overdoped cuprate Tl2Ba2CuO6 + δ, New J. Phys., Volume 12 (2010) no. 10, p. 105009
[3] Fermi surface of superconducting LaFePO determined from quantum oscillations, Phys. Rev. Lett., Volume 101 (2008) no. 21, p. 216402
[4] Introduction to Superconductivity, Dover Publications Inc., 2004
[5] The case for pairing in the cuprate superconductors, Phys. Rep., Volume 250 (1995), p. 329
[6] Unconventional sign-reversing superconductivity in LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 057003
[7] Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 087004
[8] Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys., Volume 11 (2009), p. 025016
[9] Momentum dependence and nodes of the superconducting gap in the iron pnictides, Phys. Rev. B, Volume 80 (2009), p. 140515
[10] Pnictogen height as a possible switch between high- nodeless and low- nodal pairings in the iron-based superconductors, Phys. Rev. B, Volume 79 (2009), p. 224511
[11] Evolution of the Fermi surface of BaFe2(As1 − xPx)2 on entering the superconducting dome, Phys. Rev. Lett., Volume 104 (2010), p. 057008
[12] Possible three dimensional nodes in the s± superconducting gap of BaFe2(As1 − xPx)2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 013710
[13] The superconducting penetration depth from the semiclassical model, Ann. Phys. (Leipzig), Volume 2 (1993), pp. 535-546
[14] Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett., Volume 79 (1997) no. 1, pp. 135-138
[15] Relationship between the pseudo- and superconducting gaps: Effects of residual pairing correlations below , Phys. Rev. B, Volume 58 (1998) no. 10, p. R5936-R5939
[16] Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4708-4711
[17] Unusual thermodynamical and transport signatures of the BCS to Bose–Einstein crossover scenario below , Phys. Rev. Lett., Volume 85 (2000) no. 13, pp. 2801-2804
[18] Importance of phase fluctuations in superconductors with small superfluid density, Nature, Volume 374 (2002), pp. 434-437
[19] Nonlinear Meissner effect in unconventional superconductors, Phys. Rev. B, Volume 51 (1995) no. 22, pp. 16233-16253
[20] Quasiparticle phenomenology for thermodynamics of strong-coupling superconductors, J. Low Temp. Phys., Volume 12 (1973), p. 387
[21] Phenomenological two-gap model for the specific heat of MgB2, Europhys. Lett., Volume 56 (2001) no. 6, p. 856
[22] Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor, Phys. Rev. B, Volume 80 (2009) no. 1, p. 014507
[23] Magnetic penetration depth of MgB2, Physica C, Volume 385 (2003), pp. 205-214
[24] Comment on “first-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism”, Phys. Rev. B, Volume 69 (2004), p. 056501
[25] Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor, Phys. Rev. B, Volume 48 (1993), pp. 4219-4222
[26] Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95, Phys. Rev. B, Volume 50 (1994) no. 6, pp. 4051-4063
[27] Superfluid density and penetration depth in the iron pnictides, Phys. Rev. B, Volume 79 (2009), p. 140507
[28] Lifting of nodes by disorder in extended-s-state superconductors: Application to ferropnictides, Phys. Rev. B, Volume 79 (2009), p. 094512
[29] Localized states in a d-wave superconductor, Phys. Rev. Lett., Volume 71 (1993) no. 12, pp. 1887-1890
[30] Electronic thermal conductivity and the Wiedemann–Franz law for unconventional superconductors, Phys. Rev. B, Volume 53 (1996) no. 22, pp. 15147-15161
[31] Theory of thermal conductivity in extended-s state superconductors: Application to ferropnictides, Phys. Rev. B, Volume 80 (2009) no. 22, p. 224525
[32] Absence of nonlinear Meissner effect in YBa2Cu3O6.95, Phys. Rev. B, Volume 59 (1999), p. R14173
[33] Magnetic penetration depth of single-crystalline SmFeAsO1 − xFy, Phys. Rev. B, Volume 79 (2009), p. 140501(R)
[34] Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1 − xFx]FeAs, Chin. Phys. Lett., Volume 25 (2008), pp. 2215-2216
[35] Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1 − xFx measured by muon spin rotation, Phys. Rev. Lett., Volume 101 (2008) no. 9, p. 097010
[36] Muon-spin rotation studies of SmFeAsO0.85 and NdFeAsO0.85 superconductors, Phys. Rev. B, Volume 78 (2008), p. 092506
[37] Temperature-dependent anisotropy of the penetration depth and coherence length of MgB2, Phys. Rev. Lett., Volume 95 (2005), p. 097005
[38] Exponential temperature dependence of the penetration depth in single crystal MgB2, Phys. Rev. Lett., Volume 88 (2002), p. 047002
[39] Power-law dependence of the ab-plane penetration depth in Nd1.85Ce0.15CuO4 − y, Phys. Rev. B, Volume 54 (1996), p. R3753-R3755
[40] Microwave penetration depth and quasiparticle conductivity in single crystal PrFeAsO1 − y: Evidence for fully gapped superconductivity, Phys. Rev. Lett., Volume 102 (2009), p. 017002
[41] Nonexponential London penetration depth of FeAs-based superconducting RFeAsO0.9F0.1 (R = La, Nd) single crystals, Phys. Rev. Lett., Volume 102 (2009) no. 24, p. 247002
[42] Anisotropic fluctuations and quasiparticle excitations in FeSe0.5Te0.5, Phys. Rev. B, Volume 82 (2010), p. 104514
[43] Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B, Volume 78 (2008), p. 134514
[44] Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010), p. 097002
[45] Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl. Phys. Lett., Volume 93 (2008), p. 152505
[46] Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure, Nat. Mater., Volume 8 (2009), pp. 630-633
[47] Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (), Phys. Rev. B, Volume 80 (2009), p. 064506
[48] Tellurium substitution effect on superconductivity of the alpha-phase iron selenide, EPL, Volume 84 (2008), p. 37002
[49] Muon-spin-spectroscopy study of the penetration depth of FeSe0.5Te0.5, Phys. Rev. B, Volume 81 (2010), p. 092510
[50] Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors, Phys. Rev. Lett., Volume 102 (2009) no. 12, p. 127004
[51] London penetration depth in single crystals of Ba(Fe1 − xCox)2As2 spanning underdoped to overdoped compositions, Phys. Rev. B, Volume 79 (2009), p. 100506
[52] Nonexponential London penetration depth of external magnetic fields in superconducting Ba1 − xKxFe2As2 single crystals, Phys. Rev. B, Volume 80 (2009) no. 2, p. 020501
[53] Microwave surface-impedance measurements of the magnetic penetration depth in single crystal Ba1 − xKxFe2As2 superconductors: Evidence for a disorder-dependent superfluid density, Phys. Rev. Lett., Volume 102 (2009) no. 20, p. 207001
[54] London penetration depth in Ba(Fe1 − xTx)2As2 (T = Co, Ni) superconductors irradiated with heavy ions, Phys. Rev. B, Volume 82 (2010) no. 6, p. 060518
[55] Quasiparticle heat transport in single-crystalline Ba1 − xKxFe2As2: Evidence for a k-dependent superconducting gap without nodes, Phys. Rev. B, Volume 80 (2009), p. 140503
[56] Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe1 − xCox)2As2: From isotropic to a strongly k-dependent gap structure, Phys. Rev. Lett., Volume 104 (2010) no. 6, p. 067002
[57] Multigap nodeless superconductivity in FeSex: Evidence from quasiparticle heat transport, Phys. Rev. B, Volume 80 (2009), p. 024518
[58] Evidence for a nodal-line superconducting state in LaFePO, Phys. Rev. Lett., Volume 102 (2009), p. 147001
[59] Iron-based layered superconductor: LaOFeP, J. Amer. Chem. Soc., Volume 128 (2006) no. 31, pp. 10012-10013
[60] Iron-based layered superconductor La[O1 − xFx]FeAs () with , J. Amer. Chem. Soc., Volume 130 (2008), pp. 3296-3297
[61] Superconductivity at 43 K in an iron-based layered compound LaO1 − xFxFeAs, Nature, Volume 453 (2008), pp. 376-378
[62] Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1 − y (Ln = La, Nd), J. Phys. Soc. Jpn., Volume 77 (2008), p. 083704
[63] J.G. Analytis, J.-H. Chu, A. S. Erickson, C. Kucharczyk, A. Serafin, A. Carrington, C. Cox, S.M. Kauzlarich, H. Hope, I.R. Fisher, Bulk superconductivity and disorder in single crystals of LaFePO, (unpublished). | arXiv
[64] Energy-scale phenomenology and pairing via resonant spin-charge motion in FeAs, CuO, heavy-fermion and other exotic superconductors, Physica B, Volume 404 (2009) no. 19, pp. 3195-3201
[65] Magnetism and disorder effects on muSr measurements of the magnetic penetration depth in iron-based superconductors, Phys. Rev. Lett., Volume 106 (2011), p. 127002
[66] Evidence for a nodal energy gap in the iron-pnictide superconductor LaFePO from penetration depth measurements by scanning squid susceptometry, Phys. Rev. Lett., Volume 103 (2009) no. 12, p. 127003
[67] Thermal conductivity measurements of the energy-gap anisotropy of superconducting LaFePO at low temperatures, Phys. Rev. B, Volume 80 (2009), p. 220509
[68] Intrinsic properties of stoichiometric LaFePO, Phys. Rev. B, Volume 78 (2008) no. 2, p. 024521
[69] Energy gap and proximity effect in MgB2 superconducting wires, Phys. Rev. B, Volume 64 (2001), p. 180501
[70] Fermi surface and mass enhancement in KFe2As2 from de Haas–van Alphen effect measurements, J. Phys. Soc. Jpn., Volume 79 (2010), p. 053702
[71] Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements, Phys. Rev. B, Volume 82 (2010), p. 014526
[72] Possible multiple gap superconductivity with line nodes in heavily hole-doped superconductor KFe2As2 studied by 75As nuclear quadrupole resonance and specific heat, J. Phys. Soc. Jpn., Volume 78 (2009), p. 083712
[73] Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2, Phys. Rev. Lett., Volume 104 (2010) no. 8, p. 087005
[74] The pairing state in KFe2As2 studied by measurements of the magnetic vortex lattice | arXiv
[75] Line nodes in the energy gap of superconducting BaFe2(As1 − xPx)2 single crystals as seen via penetration depth and thermal conductivity, Phys. Rev. B, Volume 81 (2010), p. 220501(R)
[76] Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1 − xPx)2 superconductors, Phys. Rev. B, Volume 81 (2010) no. 18, p. 184519
[77] Evidence for surface Andreev bound states in cuprate superconductors from penetration depth measurements, Phys. Rev. Lett., Volume 86 (2001), pp. 1074-1077
[78] Precision measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett., Volume 70 (1993) no. 25, p. 3999
[79] 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2, Phys. Rev. B, Volume 81 (2010) no. 2, p. 020503
[80] Violation of Andersonʼs theorem for the sign-reversing s-wave state of iron-pnictide superconductors, Phys. Rev. Lett., Volume 103 (2009) no. 17, p. 177001
[81] Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard–Holstein model, Phys. Rev. Lett., Volume 104 (2010) no. 15, p. 157001
Cité par Sources :
Commentaires - Politique