Comptes Rendus
Studies of the gap structure of iron-based superconductors using magnetic penetration depth
[Étude de la structure du gap des supraconducteurs à base de fer par la longueur de pénétration magnétique]
Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 502-514.

Cet article passe en revue des expériences visant à déterminer la structure du gap supraconducteur dans les supraconducteurs à base de fer. Il se focalise sur les informations obtenues par des mesures de la longueur de pénétration magnétique et de sa dépendance en température, mais les propriétés obtenues par dʼautres moyens de mesures sont aussi examinées, en particulier la conductivité thermique. Lʼarticle comprend une description théorique de base sur les types de structures de gap suggérées pour les supraconducteurs à base de fer, ainsi que la théorie générale de la longueur de pénétration dans les supraconducteurs conventionnels et non conventionnels. Lʼeffet de la diffusion des impuretés sur chacune des structures de gap candidates, important pour lʼinterprétation des données, sera également analysé. Les données de longueurs de pénétration des monocristaux des composés suivants sont examinées : SmFeAsO0.8F0.2, FeTe0.5Se0.5, LaFePO, KFe2As2 et BaFe2(As0.67P0.33)2 ; des matériaux tels que BaFe2As2 dopé par K et Co seront aussi discutés.

This article reviews experiments to determine the structure of the superconducting gap in the iron-based superconductors. It focuses on insights provided by measurements of the temperature dependence of magnetic penetration depth but also discusses the information provided by other measurements especially thermal conductivity. The article includes background theory on the types of gap structure suggested for the iron-based superconductors as well as the general theory of penetration depth in conventional and unconventional superconductors. The effect of impurity scattering on each candidate gap structure is important for the interpretation of data and so will also be discussed. Penetration depth data for single crystals of the following compounds is reviewed: SmFeAsO0.8F0.2, FeTe0.5Se0.5, LaFePO, KFe2As2 and BaFe2(As0.67P0.33)2 along with discussion on related materials such as K- and Co-doped BaFe2As2.

Publié le :
DOI : 10.1016/j.crhy.2011.03.001
Keywords: Iron-based superconductors, Iron-pnictide superconductors, Gap structure, Magnetic penetration depth
Mot clés : Supraconducteurs à base de fer, Supraconducteurs fer-pnictide, Structure de gap, Longeur de pénétration magnétique
Antony Carrington 1

1 H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
@article{CRPHYS_2011__12_5-6_502_0,
     author = {Antony Carrington},
     title = {Studies of the gap structure of iron-based superconductors using magnetic penetration depth},
     journal = {Comptes Rendus. Physique},
     pages = {502--514},
     publisher = {Elsevier},
     volume = {12},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crhy.2011.03.001},
     language = {en},
}
TY  - JOUR
AU  - Antony Carrington
TI  - Studies of the gap structure of iron-based superconductors using magnetic penetration depth
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 502
EP  - 514
VL  - 12
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.03.001
LA  - en
ID  - CRPHYS_2011__12_5-6_502_0
ER  - 
%0 Journal Article
%A Antony Carrington
%T Studies of the gap structure of iron-based superconductors using magnetic penetration depth
%J Comptes Rendus. Physique
%D 2011
%P 502-514
%V 12
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2011.03.001
%G en
%F CRPHYS_2011__12_5-6_502_0
Antony Carrington. Studies of the gap structure of iron-based superconductors using magnetic penetration depth. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 502-514. doi : 10.1016/j.crhy.2011.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.001/

[1] A.F. Bangura; P.M.C. Rourke; T.M. Benseman; M. Matusiak; J.R. Cooper; N.E. Hussey; A. Carrington Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6 + δ as revealed by quantum oscillations, Phys. Rev. B, Volume 82 (2010) no. 14, p. 140501(R)

[2] P.M.C. Rourke; A.F. Bangura; T.M. Benseman; M. Matusiak; J.R. Cooper; A. Carrington; N.E. Hussey A detailed de Haas–van Alphen effect study of the overdoped cuprate Tl2Ba2CuO6 + δ, New J. Phys., Volume 12 (2010) no. 10, p. 105009

[3] A.I. Coldea; J.D. Fletcher; A. Carrington; J.G. Analytis; A.F. Bangura; J.-H. Chu; A.S. Erickson; I.R. Fisher; N.E. Hussey; R.D. McDonald Fermi surface of superconducting LaFePO determined from quantum oscillations, Phys. Rev. Lett., Volume 101 (2008) no. 21, p. 216402

[4] M. Tinkham Introduction to Superconductivity, Dover Publications Inc., 2004

[5] D.J. Scalapino The case for dx2y2 pairing in the cuprate superconductors, Phys. Rep., Volume 250 (1995), p. 329

[6] I.I. Mazin; D.J. Singh; M.D. Johannes; M.H. Du Unconventional sign-reversing superconductivity in LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 057003

[7] K. Kuroki; S. Onari; R. Arita; H. Usui; Y. Tanaka; H. Kontani; H. Aoki Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 087004

[8] S. Graser; T.A. Maier; P.J. Hirschfeld; D.J. Scalapino Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys., Volume 11 (2009), p. 025016

[9] A.V. Chubukov; M.G. Vavilov; A.B. Vorontsov Momentum dependence and nodes of the superconducting gap in the iron pnictides, Phys. Rev. B, Volume 80 (2009), p. 140515

[10] K. Kuroki; H. Usui; S. Onari; R. Arita; H. Aoki Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors, Phys. Rev. B, Volume 79 (2009), p. 224511

[11] H. Shishido; A.F. Bangura; A.I. Coldea; S. Tonegawa; K. Hashimoto; S. Kasahara; P.M.C. Rourke; H. Ikeda; T. Terashima; R. Settai; Y. Onuki; D. Vignolles; C. Proust; B. Vignolle; A. McCollam; Y. Matsuda; T. Shibauchi; A. Carrington Evolution of the Fermi surface of BaFe2(As1 − xPx)2 on entering the superconducting dome, Phys. Rev. Lett., Volume 104 (2010), p. 057008

[12] K. Suzuki; H. Usui; K. Kuroki Possible three dimensional nodes in the s± superconducting gap of BaFe2(As1 − xPx)2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 013710

[13] B.S. Chandrasekhar; D. Einzel The superconducting penetration depth from the semiclassical model, Ann. Phys. (Leipzig), Volume 2 (1993), pp. 535-546

[14] I. Kosztin; A.J. Leggett Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett., Volume 79 (1997) no. 1, pp. 135-138

[15] I. Kosztin; Q. Chen; B. Jankó; K. Levin Relationship between the pseudo- and superconducting gaps: Effects of residual pairing correlations below Tc, Phys. Rev. B, Volume 58 (1998) no. 10, p. R5936-R5939

[16] Q. Chen; I. Kosztin; B. Jankó; K. Levin Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates, Phys. Rev. Lett., Volume 81 (1998) no. 21, pp. 4708-4711

[17] Q. Chen; I. Kosztin; K. Levin Unusual thermodynamical and transport signatures of the BCS to Bose–Einstein crossover scenario below Tc, Phys. Rev. Lett., Volume 85 (2000) no. 13, pp. 2801-2804

[18] V. Emery; S. Kivelson Importance of phase fluctuations in superconductors with small superfluid density, Nature, Volume 374 (2002), pp. 434-437

[19] D. Xu; S.K. Yip; J.A. Sauls Nonlinear Meissner effect in unconventional superconductors, Phys. Rev. B, Volume 51 (1995) no. 22, pp. 16233-16253

[20] H. Padamsee; J. Neighbor; C. Shiffman Quasiparticle phenomenology for thermodynamics of strong-coupling superconductors, J. Low Temp. Phys., Volume 12 (1973), p. 387

[21] F. Bouquet; Y. Wang; R.A. Fisher; D.G. Hinks; J.D. Jorgensen; A. Junod; N.E. Phillips Phenomenological two-gap model for the specific heat of MgB2, Europhys. Lett., Volume 56 (2001) no. 6, p. 856

[22] V.G. Kogan; C. Martin; R. Prozorov Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor, Phys. Rev. B, Volume 80 (2009) no. 1, p. 014507

[23] A. Carrington; F. Manzano Magnetic penetration depth of MgB2, Physica C, Volume 385 (2003), pp. 205-214

[24] I.I. Mazin; O.K. Andersen; O. Jepsen; A.A. Golubov; O.V. Dolgov; J. Kortus Comment on “first-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism”, Phys. Rev. B, Volume 69 (2004), p. 056501

[25] P.J. Hirschfeld; N. Goldenfeld Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor, Phys. Rev. B, Volume 48 (1993), pp. 4219-4222

[26] D.A. Bonn; S. Kamal; K. Zhang; R. Liang; D.J. Baar; E. Klein; W.N. Hardy Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95, Phys. Rev. B, Volume 50 (1994) no. 6, pp. 4051-4063

[27] A.B. Vorontsov; M.G. Vavilov; A.V. Chubukov Superfluid density and penetration depth in the iron pnictides, Phys. Rev. B, Volume 79 (2009), p. 140507

[28] V. Mishra; G. Boyd; S. Graser; T. Maier; P.J. Hirschfeld; D.J. Scalapino Lifting of nodes by disorder in extended-s-state superconductors: Application to ferropnictides, Phys. Rev. B, Volume 79 (2009), p. 094512

[29] P.A. Lee Localized states in a d-wave superconductor, Phys. Rev. Lett., Volume 71 (1993) no. 12, pp. 1887-1890

[30] M.J. Graf; S.-K. Yip; J.A. Sauls; D. Rainer Electronic thermal conductivity and the Wiedemann–Franz law for unconventional superconductors, Phys. Rev. B, Volume 53 (1996) no. 22, pp. 15147-15161

[31] V. Mishra; A. Vorontsov; P.J. Hirschfeld; I. Vekhter Theory of thermal conductivity in extended-s state superconductors: Application to ferropnictides, Phys. Rev. B, Volume 80 (2009) no. 22, p. 224525

[32] A. Carrington; R.W. Giannetta; J.T. Kim; J. Giapintzakis Absence of nonlinear Meissner effect in YBa2Cu3O6.95, Phys. Rev. B, Volume 59 (1999), p. R14173

[33] L. Malone; J.D. Fletcher; A. Serafin; A. Carrington; N.D. Zhigadlo; Z. Bukowski; S. Katrych; J. Karpinski Magnetic penetration depth of single-crystalline SmFeAsO1 − xFy, Phys. Rev. B, Volume 79 (2009), p. 140501(R)

[34] Z.A. Ren; W. Lu; J. Yang; W. Yi; X.L. Shen; Z.C. Li; G.C. Che; X.L. Dong; L.L. Sun; F. Zhou; Z.X. Zhao Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1 − xFx]FeAs, Chin. Phys. Lett., Volume 25 (2008), pp. 2215-2216

[35] A.J. Drew; F.L. Pratt; T. Lancaster; S.J. Blundell; P.J. Baker; R.H. Liu; G. Wu; X.H. Chen; I. Watanabe; V.K. Malik; A. Dubroka; K.W. Kim; M. Rossle; C. Bernhard Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1 − xFx measured by muon spin rotation, Phys. Rev. Lett., Volume 101 (2008) no. 9, p. 097010

[36] R. Khasanov; H. Luetkens; A. Amato; H.-H. Klauss; Z.A. Ren; J. Yang; W. Lu; Z.-X. Zhao Muon-spin rotation studies of SmFeAsO0.85 and NdFeAsO0.85 superconductors, Phys. Rev. B, Volume 78 (2008), p. 092506

[37] J.D. Fletcher; A. Carrington; O.J. Taylor; S.M. Kazakov; J. Karpinski Temperature-dependent anisotropy of the penetration depth and coherence length of MgB2, Phys. Rev. Lett., Volume 95 (2005), p. 097005

[38] F. Manzano; A. Carrington; N.E. Hussey; S. Lee; A. Yamamoto; S. Tajima Exponential temperature dependence of the penetration depth in single crystal MgB2, Phys. Rev. Lett., Volume 88 (2002), p. 047002

[39] J.R. Cooper Power-law dependence of the ab-plane penetration depth in Nd1.85Ce0.15CuO4 − y, Phys. Rev. B, Volume 54 (1996), p. R3753-R3755

[40] K. Hashimoto; T. Shibauchi; T. Kato; K. Ikada; R. Okazaki; H. Shishido; M. Ishikado; H. Kito; A. Iyo; H. Eisaki; S. Shamoto; Y. Matsuda Microwave penetration depth and quasiparticle conductivity in single crystal PrFeAsO1 − y: Evidence for fully gapped superconductivity, Phys. Rev. Lett., Volume 102 (2009), p. 017002

[41] C. Martin; M.E. Tillman; H. Kim; M.A. Tanatar; S.K. Kim; A. Kreyssig; R.T. Gordon; M.D. Vannette; S. Nandi; V.G. Kogan; S.L. Budʼko; P.C. Canfield; A.I. Goldman; R. Prozorov Nonexponential London penetration depth of FeAs-based superconducting RFeAsO0.9F0.1 (R = La, Nd) single crystals, Phys. Rev. Lett., Volume 102 (2009) no. 24, p. 247002

[42] A. Serafin; A.I. Coldea; A.Y. Ganin; M.J. Rosseinsky; K. Prassides; D. Vignolles; A. Carrington Anisotropic fluctuations and quasiparticle excitations in FeSe0.5Te0.5, Phys. Rev. B, Volume 82 (2010), p. 104514

[43] A. Subedi; L.J. Zhang; D.J. Singh; M.H. Du Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B, Volume 78 (2008), p. 134514

[44] A. Tamai; A.Y. Ganin; E. Rozbicki; J. Bacsa; W. Meevasana; P.D.C. King; M. Caffio; R. Schaub; S. Margadonna; K. Prassides; M.J. Rosseinsky; F. Baumberger Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010), p. 097002

[45] Y. Mizuguchi; F. Tomioka; S. Tsuda; T. Yamaguchi; Y. Takano Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl. Phys. Lett., Volume 93 (2008), p. 152505

[46] S. Medvedev; T.M. Mcqueen; I.A. Troyan; T. Palasyuk; M.I. Eremets; R.J. Cava; S. Naghavi; F. Casper; V. Ksenofontov; G. Wortmann; C. Felser Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure, Nat. Mater., Volume 8 (2009), pp. 630-633

[47] S. Margadonna; Y. Takabayashi; Y. Ohishi; Y. Mizuguchi; Y. Takano; T. Kagayama; T. Nakagawa; M. Takata; K. Prassides Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37 K), Phys. Rev. B, Volume 80 (2009), p. 064506

[48] K.W. Yeh; T.W. Huang; Y.L. Huang; T.K. Chen; F.C. Hsu; P.M. Wu; Y.C. Lee; Y.Y. Chu; C.L. Chen; J.Y. Luo; D.C. Yan; M.K. Wu Tellurium substitution effect on superconductivity of the alpha-phase iron selenide, EPL, Volume 84 (2008), p. 37002

[49] P.K. Biswas; G. Balakrishnan; D.M. Paul; C.V. Tomy; M.R. Lees; A.D. Hillier Muon-spin-spectroscopy study of the penetration depth of FeSe0.5Te0.5, Phys. Rev. B, Volume 81 (2010), p. 092510

[50] R.T. Gordon; N. Ni; C. Martin; M.A. Tanatar; M.D. Vannette; H. Kim; G.D. Samolyuk; J. Schmalian; S. Nandi; A. Kreyssig; A.I. Goldman; J.Q. Yan; S.L. Budʼko; P.C. Canfield; R. Prozorov Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors, Phys. Rev. Lett., Volume 102 (2009) no. 12, p. 127004

[51] R.T. Gordon; C. Martin; H. Kim; N. Ni; M.A. Tanatar; J. Schmalian; I.I. Mazin; S.L. Budʼko; P.C. Canfield; R. Prozorov London penetration depth in single crystals of Ba(Fe1 − xCox)2As2 spanning underdoped to overdoped compositions, Phys. Rev. B, Volume 79 (2009), p. 100506

[52] C. Martin; R.T. Gordon; M.A. Tanatar; H. Kim; N. Ni; S.L. Budʼko; P.C. Canfield; H. Luo; H.H. Wen; Z. Wang; A.B. Vorontsov; V.G. Kogan; R. Prozorov Nonexponential London penetration depth of external magnetic fields in superconducting Ba1 − xKxFe2As2 single crystals, Phys. Rev. B, Volume 80 (2009) no. 2, p. 020501

[53] K. Hashimoto; T. Shibauchi; S. Kasahara; K. Ikada; S. Tonegawa; T. Kato; R. Okazaki; C.J. van der Beek; M. Konczykowski; H. Takeya; K. Hirata; T. Terashima; Y. Matsuda Microwave surface-impedance measurements of the magnetic penetration depth in single crystal Ba1 − xKxFe2As2 superconductors: Evidence for a disorder-dependent superfluid density, Phys. Rev. Lett., Volume 102 (2009) no. 20, p. 207001

[54] H. Kim; R.T. Gordon; M.A. Tanatar; J. Hua; U. Welp; W.K. Kwok; N. Ni; S.L. Budʼko; P.C. Canfield; A.B. Vorontsov; R. Prozorov London penetration depth in Ba(Fe1 − xTx)2As2 (T = Co, Ni) superconductors irradiated with heavy ions, Phys. Rev. B, Volume 82 (2010) no. 6, p. 060518

[55] X.G. Luo; M.A. Tanatar; J.-P. Reid; H. Shakeripour; N. Doiron-Leyraud; N. Ni; S.L. Budʼko; P.C. Canfield; H. Luo; Z. Wang; H.-H. Wen; R. Prozorov; L. Taillefer Quasiparticle heat transport in single-crystalline Ba1 − xKxFe2As2: Evidence for a k-dependent superconducting gap without nodes, Phys. Rev. B, Volume 80 (2009), p. 140503

[56] M.A. Tanatar; J.-P. Reid; H. Shakeripour; X.G. Luo; N. Doiron-Leyraud; N. Ni; S.L. Budʼko; P.C. Canfield; R. Prozorov; L. Taillefer Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe1 − xCox)2As2: From isotropic to a strongly k-dependent gap structure, Phys. Rev. Lett., Volume 104 (2010) no. 6, p. 067002

[57] J.K. Dong; T.Y. Guan; S.Y. Zhou; X. Qiu; L. Ding; C. Zhang; U. Patel; Z.L. Xiao; S.Y. Li Multigap nodeless superconductivity in FeSex: Evidence from quasiparticle heat transport, Phys. Rev. B, Volume 80 (2009), p. 024518

[58] J.D. Fletcher; A. Serafin; L. Malone; J.G. Analytis; J.-H. Chu; A.S. Erickson; I.R. Fisher; A. Carrington Evidence for a nodal-line superconducting state in LaFePO, Phys. Rev. Lett., Volume 102 (2009), p. 147001

[59] Y. Kamihara; H. Hiramatsu; M. Hirano; R. Kawamura; H. Yanagi; T. Kamiya; H. Hosono Iron-based layered superconductor: LaOFeP, J. Amer. Chem. Soc., Volume 128 (2006) no. 31, pp. 10012-10013

[60] Y. Kamihara; T. Watanabe; M. Hirano; H. Hosono Iron-based layered superconductor La[O1 − xFx]FeAs (x=0.050.12) with Tc=26 K, J. Amer. Chem. Soc., Volume 130 (2008), pp. 3296-3297

[61] H. Takahashi; K. Igawa; K. Arii; Y. Kamihara; M. Hirano; H. Hosono Superconductivity at 43 K in an iron-based layered compound LaO1 − xFxFeAs, Nature, Volume 453 (2008), pp. 376-378

[62] C.-H. Lee; A. Iyo; H. Eisaki; H. Kito; M.T. Fernandez-Diaz; T. Ito; K. Kihou; H. Matsuhata; M. Braden; K. Yamada Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1 − y (Ln = La, Nd), J. Phys. Soc. Jpn., Volume 77 (2008), p. 083704

[63] J.G. Analytis, J.-H. Chu, A. S. Erickson, C. Kucharczyk, A. Serafin, A. Carrington, C. Cox, S.M. Kauzlarich, H. Hope, I.R. Fisher, Bulk superconductivity and disorder in single crystals of LaFePO, (unpublished). | arXiv

[64] Y. Uemura Energy-scale phenomenology and pairing via resonant spin-charge motion in FeAs, CuO, heavy-fermion and other exotic superconductors, Physica B, Volume 404 (2009) no. 19, pp. 3195-3201

[65] J. Sonier; W. Huang; C. Kaiser; C. Cochrane; V. Pacradouni; S. Sabok-Sayr; M. Lumsden; B. Sales; M. McGuire; A. Sefat; D. Mandrus Magnetism and disorder effects on muSr measurements of the magnetic penetration depth in iron-based superconductors, Phys. Rev. Lett., Volume 106 (2011), p. 127002

[66] C.W. Hicks; T.M. Lippman; M.E. Huber; J.G. Analytis; J.-H. Chu; A.S. Erickson; I.R. Fisher; K.A. Moler Evidence for a nodal energy gap in the iron-pnictide superconductor LaFePO from penetration depth measurements by scanning squid susceptometry, Phys. Rev. Lett., Volume 103 (2009) no. 12, p. 127003

[67] M. Yamashita; N. Nakata; Y. Senshu; S. Tonegawa; K. Ikada; K. Hashimoto; H. Sugawara; T. Shibauchi; Y. Matsuda Thermal conductivity measurements of the energy-gap anisotropy of superconducting LaFePO at low temperatures, Phys. Rev. B, Volume 80 (2009), p. 220509

[68] T.M. McQueen; M. Regulacio; A.J. Williams; Q. Huang; J.W. Lynn; Y.S. Hor; D.V. West; M.A. Green; R.J. Cava Intrinsic properties of stoichiometric LaFePO, Phys. Rev. B, Volume 78 (2008) no. 2, p. 024521

[69] R. Prozorov; R.W. Giannetta; S.L. Budʼko; P.C. Canfield Energy gap and proximity effect in MgB2 superconducting wires, Phys. Rev. B, Volume 64 (2001), p. 180501

[70] T. Terashima; M. Kimata; N. Kurita; H. Satsukawa; A. Harada; K. Hazama; M. Imai; A. Sato; K. Kihou; C.-H. Lee; H. Kito; H. Eisaki; A. Iyo; T. Saito; H. Fukazawa; Y. Kohori; H. Harima; S. Uji Fermi surface and mass enhancement in KFe2As2 from de Haas–van Alphen effect measurements, J. Phys. Soc. Jpn., Volume 79 (2010), p. 053702

[71] K. Hashimoto; A. Serafin; S. Tonegawa; R. Katsumata; R. Okazaki; T. Saito; H. Fukazawa; Y. Kohori; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; H. Ikeda; Y. Matsuda; A. Carrington; T. Shibauchi Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements, Phys. Rev. B, Volume 82 (2010), p. 014526

[72] H. Fukazawa; Y. Yamada; K. Kondo; T. Saito; Y. Kohori; K. Kuga; Y. Matsumoto; S. Nakatsuji; H. Kito; P.M. Shirage; K. Kihou; N. Takeshita; C.-H. Lee; A. Iyo; H. Eisaki Possible multiple gap superconductivity with line nodes in heavily hole-doped superconductor KFe2As2 studied by 75As nuclear quadrupole resonance and specific heat, J. Phys. Soc. Jpn., Volume 78 (2009), p. 083712

[73] J.K. Dong; S.Y. Zhou; T.Y. Guan; H. Zhang; Y.F. Dai; X. Qiu; X.F. Wang; Y. He; X.H. Chen; S.Y. Li Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2, Phys. Rev. Lett., Volume 104 (2010) no. 8, p. 087005

[74] H. Kawano-Furukawa; C.J. Bowell; J.S. White; R. Heslop; A. Cameron; E. Forgan; K. Kihou; C.H. Lee; A. Iyo; H. Eisaki; T. Saito; H. Fukazawa; Y. Kohori; R. Cubitt; C.D. Dewhurst; J.L. Gavilano; M. Zolliker The pairing state in KFe2As2 studied by measurements of the magnetic vortex lattice | arXiv

[75] K. Hashimoto; M. Yamashita; S. Kasahara; Y. Senshu; N. Nakata; S. Tonegawa; K. Ikada; A. Serafin; A. Carrington; T. Terashima; H. Ikeda; T. Shibauchi; Y. Matsuda Line nodes in the energy gap of superconducting BaFe2(As1 − xPx)2 single crystals as seen via penetration depth and thermal conductivity, Phys. Rev. B, Volume 81 (2010), p. 220501(R)

[76] S. Kasahara; T. Shibauchi; K. Hashimoto; K. Ikada; S. Tonegawa; R. Okazaki; H. Shishido; H. Ikeda; H. Takeya; K. Hirata; T. Terashima; Y. Matsuda Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1 − xPx)2 superconductors, Phys. Rev. B, Volume 81 (2010) no. 18, p. 184519

[77] A. Carrington; F. Manzano; R. Prozorov; R.W. Giannetta; N. Kameda; T. Tamegai Evidence for surface Andreev bound states in cuprate superconductors from penetration depth measurements, Phys. Rev. Lett., Volume 86 (2001), pp. 1074-1077

[78] W.N. Hardy; D.A. Bonn; D.C. Morgan; R. Liang; K. Zhang Precision measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett., Volume 70 (1993) no. 25, p. 3999

[79] Y. Nakai; T. Iye; S. Kitagawa; K. Ishida; S. Kasahara; T. Shibauchi; Y. Matsuda; T. Terashima 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2, Phys. Rev. B, Volume 81 (2010) no. 2, p. 020503

[80] S. Onari; H. Kontani Violation of Andersonʼs theorem for the sign-reversing s-wave state of iron-pnictide superconductors, Phys. Rev. Lett., Volume 103 (2009) no. 17, p. 177001

[81] H. Kontani; S. Onari Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard–Holstein model, Phys. Rev. Lett., Volume 104 (2010) no. 15, p. 157001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Iron-based superconductors in high magnetic fields

Amalia I. Coldea; Daniel Braithwaite; Antony Carrington

C. R. Phys (2013)


NMR studies on iron-pnictide superconductors: LaFeAs(O1xFx) and BaFe2(As1xPx)2

Kenji Ishida; Yusuke Nakai; Shunsaku Kitagawa; ...

C. R. Phys (2011)


Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity

Dmytro S. Inosov

C. R. Phys (2016)