[Supraconducteurs à base de fer en champ magnétique intense]
Nous passons en revue les mesures en fort champ magnétique des propriétés normales et supraconductrices des nouveaux composés supraconducteurs à base de fer. Nous rappelons les mécanismes qui limitent la supraconductivité à haut champ et discutons les informations sur la phase supraconductrice qui sont obtenues grâce à la mesure du champ critique supérieur, mais également les effets des fluctuations thermiques sur la détermination de celui-ci par des mesures de transport ou de chaleur spécifique. Nous discutons également la structure électronique de la phase normale, principalement par des mesures dʼoscillations quantiques comme lʼeffet de Haas–van Alphen. Ces résultats permettent de déterminer très précisément la topologie de la surface de Fermi et la masse des quasi-particules dans plusieurs supraconducteurs à base de fer des familles 1111, 122 et 111.
Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas–van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families.
Mot clés : Supraconductivité, Fort champ magnétique, Supraconducteurs à base de fer, Champ critique supérieur, Oscillations quantiques
Amalia I. Coldea 1 ; Daniel Braithwaite 2 ; Antony Carrington 3
@article{CRPHYS_2013__14_1_94_0, author = {Amalia I. Coldea and Daniel Braithwaite and Antony Carrington}, title = {Iron-based superconductors in high magnetic fields}, journal = {Comptes Rendus. Physique}, pages = {94--105}, publisher = {Elsevier}, volume = {14}, number = {1}, year = {2013}, doi = {10.1016/j.crhy.2012.07.003}, language = {en}, }
Amalia I. Coldea; Daniel Braithwaite; Antony Carrington. Iron-based superconductors in high magnetic fields. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 94-105. doi : 10.1016/j.crhy.2012.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.07.003/
[1] Iron-based layered superconductor: LaOFeP, J. Amer. Chem. Soc., Volume 128 (2006), p. 10012
[2] Iron-based layered superconductor () with , J. Amer. Chem. Soc., Volume 130 (2008), pp. 3296-3297
[3] Superconductivity at 55 K in iron-based F-doped layered quaternary compound , Chin. Phys. Lett., Volume 25 (2008), p. 2215
[4] Superconductivity at 38 K in the iron arsenide (Ba1 − xKx)Fe2As2, Phys. Rev. Lett., Volume 101 (2008), p. 107006
[5] Superconductivity at 22 K in Co-doped BaFe2As2 crystals, Phys. Rev. Lett., Volume 101 (2008), p. 117004
[6] Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1 − xPx)2, J. Phys. Condens. Matter., Volume 21 (2009), p. 382203
[7] Superconductivity in Ru-substituted polycrystalline BaFe2 − xRuxAs2, Phys. Rev. B, Volume 81 (2010), p. 174512
[8] Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J. Phys. Condens. Matter., Volume 21 (2009), p. 012208
[9] Quantum criticality, Phys. Today, Volume 64 (2011), pp. 29-35
[10] LiFeAs: An intrinsic FeAs-based superconductor with , Phys. Rev. B, Volume 78 (2008), p. 060505
[11] Structure and superconductivity of LiFeAs, Chem. Commun., Volume 45 (2008), p. 5918
[12] A new “111” type iron pnictide superconductor LiFeP, EPL, Volume 87 (2009), p. 37004
[13] Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure, Nature Mater., Volume 8 (2009), pp. 630-633
[14] Fermi surface of superconducting LaFePO determined from quantum oscillations, Phys. Rev. Lett., Volume 101 (2008), p. 216402
[15] Microscopic origin of magnetism and magnetic interactions in ferropnictides, Phys. Rev. B, Volume 79 (2009), p. 220510
[16] Unconventional superconductivity with a sign reversal in the order parameter of , Phys. Rev. Lett., Volume 101 (2008), p. 057003
[17] Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 087004
[18] Magnetism, superconductivity, and pairing symmetry in iron-based superconductors, Phys. Rev. B, Volume 78 (2008), p. 134512
[19] Multiband magnetism and superconductivity in Fe-based compounds, EPL, Volume 85 (2009), p. 37002
[20] Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys., Volume 11 (2009), p. 025016
[21] Momentum dependence and nodes of the superconducting gap in the iron pnictides, Phys. Rev. B, Volume 80 (2009), p. 140515
[22] Pnictogen height as a possible switch between high- nodeless and low- nodal pairings in the iron-based superconductors, Phys. Rev. B, Volume 79 (2009), p. 224511
[23] Possible three dimensional nodes in the s± superconducting gap of BaFe2(As1 − xPx)2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 013710
[24] Studies of the gap structure of iron-based superconductors using magnetic penetration depth, C. R. Phys., Volume 12 (2011), pp. 502-514
[25] Nodal versus nodeless behaviors of the order parameters of LiFeP and LiFeAs superconductors from magnetic penetration-depth measurements, Phys. Rev. Lett., Volume 108 (2012), p. 047003
[26] Anisotropy of the upper critical field in a Co-doped BaFe2As2 single crystal, J. Phys. Soc. Jpn., Volume 78 (2009), p. 084719
[27] Evidence for anisotropic vortex dynamics and Pauli limitation in the upper critical field of FeSe1 − xTex, J. Phys. Soc. Jpn., Volume 79 (2010), p. 053703
[28] Thermodynamic phase diagram of FeSe0.5Te0.5 single crystals in fields up to 28 Tesla, Phys. Rev. B, Volume 82 (2010), p. 184506
[29] New Fe-based superconductors: properties relevant for applications, Supercond. Sci. Technol., Volume 23 (2010), p. 034003
[30] Temperature and purity dependence of superconducting critical field . 3. Electron spin and spin–orbit effects, Phys. Rev., Volume 147 (1966), p. 295
[31] Calorimetric determination of the upper critical fields and anisotropy of NdFeAsO1 − xFx single crystals, Phys. Rev. B, Volume 78 (2008), p. 140510
[32] Upper and lower critical magnetic fields of superconducting ndfeaso1 − xfx single crystals studied by hall-probe magnetization and specific heat, Phys. Rev. B, Volume 79 (2009), p. 020508
[33] Specific heat and phase diagrams of single crystal iron pnictide superconductors, Physica C, Volume 69 (2009), pp. 575-581
[34] Nearly isotropic superconductivity in (Ba, K)Fe2As2, Nature, Volume 457 (2009), pp. 565-568
[35] Anisotropic fluctuations and quasiparticle excitations in FeSe0.5Te0.5, Phys. Rev. B, Volume 82 (2010), p. 104514
[36] AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields, Rev. Sci. Inst., Volume 81 (2010), p. 104902
[37] Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields, Nature, Volume 453 (2008), pp. 903-905
[38] Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors, New J. Phys., Volume 11 (2009), p. 075007
[39] Pseudoisotropic upper critical field in cobalt-doped SrFe2As2 epitaxial films, Phys. Rev. Lett., Volume 102 (2009), p. 117004
[40] Upper critical field of the 122-type iron pnictide superconductors, J. Phys. Chem. Solids, Volume 72 (2011), pp. 423-425
[41] Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010), p. 097002
[42] Nearly isotropic upper critical fields in a SrFe1.85Co0.15As2 single crystal, Physica C (2010), p. S317-S319
[43] Pauli-limited upper critical field of Fe1 + yTe1 − xSex, Phys. Rev. B, Volume 81 (2010), p. 094518
[44] Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal, Phys. Rev. B, Volume 84 (2011), p. 104502
[45] Upper critical magnetic field in Ba0.68K0.32Fe2As2 and Ba(Fe0.93Co0.07)2As2, JETP Lett., Volume 93 (2011), pp. 667-672
[46] A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor, Nature, Volume 425 (2003), pp. 814-817
[47] Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor, Nature Phys., Volume 2 (2006), pp. 821-825
[48] Correlation between the superconducting transition temperature and anisotropic quasiparticle scattering in Tl2Ba2CuO6 + δ, Phys. Rev. Lett., Volume 99 (2007), p. 107002
[49] Angle-dependent magnetoresistance in organic metals, J. Phys. I, Volume 6 (1996), pp. 1837-1847
[50] Quasi-two-dimensional Fermi surfaces and coherent interlayer transport in KFe(2)As(2), Phys. Rev. Lett., Volume 105 (2010), p. 246403
[51] On the angle dependence of the magnetoresistance in quasi-2-dimensional organic superconductors, J. Phys. Soc. Jpn., Volume 58 (1989), p. 1520
[52] Brendan Arnold, Ph.D. thesis, University of Bristol, 2012.
[53] Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe2P2, Phys. Rev. B, Volume 83 (2011), p. 220504
[54] Fermi surface of SrFe2P2 determined by the de Haas–van Alphen effect, Phys. Rev. Lett., Volume 103 (2009), p. 076401
[55] Topological change of the Fermi surface in ternary iron pnictides with reduced ratio: A de Haas–van Alphen study of CaFe2P2, Phys. Rev. Lett., Volume 103 (2009), p. 026404
[56] Unconventional electronic reconstruction in undoped (Ba, Sr)Fe2As2 across the spin density wave transition, Phys. Rev. B, Volume 80 (2009), p. 174510
[57] Quantum oscillations in the parent pnictide BaFe2As2: Itinerant electrons in the reconstructed state, Phys. Rev. B, Volume 80 (2009), p. 064507
[58] Complete Fermi surface in BaFe2As2 observed via Shubnikov–de Haas oscillation measurements on detwinned single crystals, Phys. Rev. Lett., Volume 107 (2011), p. 176402
[59] Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor, J. Phys. Condens. Matter., Volume 20 (2008), p. 422203
[60] Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of superconductivity, J. Phys. Condens. Matter., Volume 21 (2009), p. 322202
[61] Electron–phonon properties of pnictide superconductors, Physica C, Volume 469 (2009), pp. 628-634
[62] Self-sensing piezoresistive cantilever and its magnetic force microscopy applications, Ultramicroscopy, Volume 91 (2002), pp. 63-72
[63] Fermi-surface shrinking and interband coupling in iron-based pnictides, Phys. Rev. Lett., Volume 103 (2009), p. 046404
[64] de Haas–van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs, Phys. Rev. Lett., Volume 108 (2012), p. 047002
[65] Evolution of the Fermi surface of BaFe2(As1 − xPx)2 on entering the superconducting dome, Phys. Rev. Lett., Volume 104 (2010), p. 057008
[66] de Haas–van Alphen effect in LaFePO with two-dimensional cylindrical Fermi surfaces, J. Phys. Soc. Jpn., Volume 77 (2008), p. 113711
[67] Electronic properties of novel 6 K superconductor LiFeP in comparison with LiFeAs from first principles calculations, Solid State Commun., Volume 150 (2010), pp. 152-156
[68] Enhanced Fermi-surface nesting in superconducting BaFe2(As1 − xPx)2 revealed by the de Haas–van Alphen effect, Phys. Rev. Lett., Volume 105 (2010), p. 207004
[69] A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn., Volume 74 (2005), pp. 1103-1106
[70] Two-dimensional and three-dimensional Fermi surfaces of superconducting BaFe2(As1 − xPx)2 and their nesting properties revealed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 106 (2011), p. 117001
Cité par Sources :
Commentaires - Politique