Comptes Rendus
Iron-based superconductors in high magnetic fields
[Supraconducteurs à base de fer en champ magnétique intense]
Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 94-105.

Nous passons en revue les mesures en fort champ magnétique des propriétés normales et supraconductrices des nouveaux composés supraconducteurs à base de fer. Nous rappelons les mécanismes qui limitent la supraconductivité à haut champ et discutons les informations sur la phase supraconductrice qui sont obtenues grâce à la mesure du champ critique supérieur, mais également les effets des fluctuations thermiques sur la détermination de celui-ci par des mesures de transport ou de chaleur spécifique. Nous discutons également la structure électronique de la phase normale, principalement par des mesures dʼoscillations quantiques comme lʼeffet de Haas–van Alphen. Ces résultats permettent de déterminer très précisément la topologie de la surface de Fermi et la masse des quasi-particules dans plusieurs supraconducteurs à base de fer des familles 1111, 122 et 111.

Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas–van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families.

Publié le :
DOI : 10.1016/j.crhy.2012.07.003
Keywords: Superconductivity, High magnetic fields, Iron-based superconductors, Upper critical field, Quantum oscillations
Mot clés : Supraconductivité, Fort champ magnétique, Supraconducteurs à base de fer, Champ critique supérieur, Oscillations quantiques
Amalia I. Coldea 1 ; Daniel Braithwaite 2 ; Antony Carrington 3

1 Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
2 SPSMS, UMR-E CEA / UJF-Grenoble, INAC, 38054 Grenoble, France
3 H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
@article{CRPHYS_2013__14_1_94_0,
     author = {Amalia I. Coldea and Daniel Braithwaite and Antony Carrington},
     title = {Iron-based superconductors in high magnetic fields},
     journal = {Comptes Rendus. Physique},
     pages = {94--105},
     publisher = {Elsevier},
     volume = {14},
     number = {1},
     year = {2013},
     doi = {10.1016/j.crhy.2012.07.003},
     language = {en},
}
TY  - JOUR
AU  - Amalia I. Coldea
AU  - Daniel Braithwaite
AU  - Antony Carrington
TI  - Iron-based superconductors in high magnetic fields
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 94
EP  - 105
VL  - 14
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.07.003
LA  - en
ID  - CRPHYS_2013__14_1_94_0
ER  - 
%0 Journal Article
%A Amalia I. Coldea
%A Daniel Braithwaite
%A Antony Carrington
%T Iron-based superconductors in high magnetic fields
%J Comptes Rendus. Physique
%D 2013
%P 94-105
%V 14
%N 1
%I Elsevier
%R 10.1016/j.crhy.2012.07.003
%G en
%F CRPHYS_2013__14_1_94_0
Amalia I. Coldea; Daniel Braithwaite; Antony Carrington. Iron-based superconductors in high magnetic fields. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 94-105. doi : 10.1016/j.crhy.2012.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.07.003/

[1] Y. Kamihara; H. Hiramatsu; M. Hirano; R. Kawamura; H. Yanagi; T. Kamiya; H. Hosono Iron-based layered superconductor: LaOFeP, J. Amer. Chem. Soc., Volume 128 (2006), p. 10012

[2] Y. Kamihara; T. Watanabe; M. Hirano; H. Hosono Iron-based layered superconductor La[O1xFx]FeAs (x=0.050.12) with Tc=26 K, J. Amer. Chem. Soc., Volume 130 (2008), pp. 3296-3297

[3] R. Zhi-An; L. Wei; Y. Jie; Y. Wei; S. Xiao-Li; Zheng-Cai; C. Guang-Can; D. Xiao-Li; S. Li-Ling; Z. Fang; Z. Zhong-Xian Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1xFx]FeAs, Chin. Phys. Lett., Volume 25 (2008), p. 2215

[4] M. Rotter; M. Tegel; D. Johrendt Superconductivity at 38 K in the iron arsenide (Ba1 − xKx)Fe2As2, Phys. Rev. Lett., Volume 101 (2008), p. 107006

[5] A.S. Sefat; R. Jin; M.A. McGuire; B.C. Sales; D.J. Singh; D. Mandrus Superconductivity at 22 K in Co-doped BaFe2As2 crystals, Phys. Rev. Lett., Volume 101 (2008), p. 117004

[6] S. Jiang; H. Xing; G. Xuan; C. Wang; Z. Ren; C. Feng; J. Dai; Z. Xu; G. Cao Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1 − xPx)2, J. Phys. Condens. Matter., Volume 21 (2009), p. 382203

[7] S. Sharma; A. Bharathi; S. Chandra; V.R. Reddy; S. Paulraj; A.T. Satya; V.S. Sastry; A. Gupta; C.S. Sundar Superconductivity in Ru-substituted polycrystalline BaFe2 − xRuxAs2, Phys. Rev. B, Volume 81 (2010), p. 174512

[8] P.L. Alireza; Y.T.C. Ko; J. Gillett; C.M. Petrone; J.M. Cole; G.G. Lonzarich; S.E. Sebastian Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J. Phys. Condens. Matter., Volume 21 (2009), p. 012208

[9] S. Sachdev; B. Keimer Quantum criticality, Phys. Today, Volume 64 (2011), pp. 29-35

[10] J.H. Tapp; Z.J. Tang; B. Lv; K. Sasmal; B. Lorenz; P.C.W. Chu; A.M. Guloy LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K, Phys. Rev. B, Volume 78 (2008), p. 060505

[11] M.J. Pitcher; D.R. Parker; P. Adamson; S.J.C. Herkelrath; A.T. Boothroyd; R.M. Ibberson; M. Brunelli; S.J. Clarke Structure and superconductivity of LiFeAs, Chem. Commun., Volume 45 (2008), p. 5918

[12] Z. Deng; X.C. Wang; Q.Q. Liu; S.J. Zhang; Y.X. Lv; J.L. Zhu; R.C. Yu; C.Q. Jin A new “111” type iron pnictide superconductor LiFeP, EPL, Volume 87 (2009), p. 37004

[13] S. Medvedev; T.M. McQueen; I.A. Troyan; T. Palasyuk; M.I. Eremets; R.J. Cava; S. Naghavi; F. Casper; V. Ksenofontov; G. Wortmann; C. Felser Electronic and magnetic phase diagram of beta-Fe(1.01)Se with superconductivity at 36.7 K under pressure, Nature Mater., Volume 8 (2009), pp. 630-633

[14] A.I. Coldea; J.D. Fletcher; A. Carrington; J.G. Analytis; A.F. Bangura; J.-H. Chu; A.S. Erickson; I.R. Fisher; N.E. Hussey; R.D. McDonald Fermi surface of superconducting LaFePO determined from quantum oscillations, Phys. Rev. Lett., Volume 101 (2008), p. 216402

[15] M.D. Johannes; I.I. Mazin Microscopic origin of magnetism and magnetic interactions in ferropnictides, Phys. Rev. B, Volume 79 (2009), p. 220510

[16] I.I. Mazin; D.J. Singh; M.D. Johannes; M.H. Du Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1xFx, Phys. Rev. Lett., Volume 101 (2008), p. 057003

[17] K. Kuroki; S. Onari; R. Arita; H. Usui; Y. Tanaka; H. Kontani; H. Aoki Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 087004

[18] A.V. Chubukov; D.V. Efremov; I. Eremin Magnetism, superconductivity, and pairing symmetry in iron-based superconductors, Phys. Rev. B, Volume 78 (2008), p. 134512

[19] V. Cvetkovic; Z. Tesanovic Multiband magnetism and superconductivity in Fe-based compounds, EPL, Volume 85 (2009), p. 37002

[20] S. Graser; T.A. Maier; P.J. Hirschfeld; D.J. Scalapino Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys., Volume 11 (2009), p. 025016

[21] A.V. Chubukov; M.G. Vavilov; A.B. Vorontsov Momentum dependence and nodes of the superconducting gap in the iron pnictides, Phys. Rev. B, Volume 80 (2009), p. 140515

[22] K. Kuroki; H. Usui; S. Onari; R. Arita; H. Aoki Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors, Phys. Rev. B, Volume 79 (2009), p. 224511

[23] K. Suzuki; H. Usui; K. Kuroki Possible three dimensional nodes in the s± superconducting gap of BaFe2(As1 − xPx)2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 013710

[24] A. Carrington Studies of the gap structure of iron-based superconductors using magnetic penetration depth, C. R. Phys., Volume 12 (2011), pp. 502-514

[25] K. Hashimoto; S. Kasahara; R. Katsumata; Y. Mizukami; M. Yamashita; H. Ikeda; T. Terashima; A. Carrington; Y. Matsuda; T. Shibauchi Nodal versus nodeless behaviors of the order parameters of LiFeP and LiFeAs superconductors from magnetic penetration-depth measurements, Phys. Rev. Lett., Volume 108 (2012), p. 047003

[26] M. Kano; Y. Kohama; D. Graf; F. Balakirev; A. Sefat; M. Mcguire; B. Sales; D. Mandrus; S. Tozer Anisotropy of the upper critical field in a Co-doped BaFe2As2 single crystal, J. Phys. Soc. Jpn., Volume 78 (2009), p. 084719

[27] D. Braithwaite; G. Lapertot; W. Knafo; I. Sheikin Evidence for anisotropic vortex dynamics and Pauli limitation in the upper critical field of FeSe1 − xTex, J. Phys. Soc. Jpn., Volume 79 (2010), p. 053703

[28] T. Klein; D. Braithwaite; A. Demuer; W. Knafo; G. Lapertot; C. Marcenat; P. Rodiere; I. Sheikin; P. Strobel; A. Sulpice; P. Toulemonde Thermodynamic phase diagram of FeSe0.5Te0.5 single crystals in fields up to 28 Tesla, Phys. Rev. B, Volume 82 (2010), p. 184506

[29] M. Putti; I. Pallecchi; E. Bellingeri; M.R. Cimberle; M. Tropeano; C. Ferdeghini; A. Palenzona; C. Tarantini; A. Yamamoto; J. Jiang; J. Jaroszynski; F. Kametani; D. Abraimov; A. Polyanskii; J.D. Weiss; E.E. Hellstrom; A. Gurevich; D.C. Larbalestier; R. Jin; B.C. Sales; A.S. Sefat; M.A. McGuire; D. Mandrus; P. Cheng; Y. Jia; H.H. Wen; S. Lee; C.B. Eom New Fe-based superconductors: properties relevant for applications, Supercond. Sci. Technol., Volume 23 (2010), p. 034003

[30] N. Werthame; E. Helfand; P. Hohenber Temperature and purity dependence of superconducting critical field Hc2. 3. Electron spin and spin–orbit effects, Phys. Rev., Volume 147 (1966), p. 295

[31] U. Welp; R. Xie; A.E. Koshelev; W.K. Kwok; P. Cheng; L. Fang; H.H. Wen Calorimetric determination of the upper critical fields and anisotropy of NdFeAsO1 − xFx single crystals, Phys. Rev. B, Volume 78 (2008), p. 140510

[32] Z. Pribulova; T. Klein; J. Kacmarcik; C. Marcenat; M. Konczykowski; S.L. Budʼko; M. Tillman; P.C. Canfield Upper and lower critical magnetic fields of superconducting ndfeaso1 − xfx single crystals studied by hall-probe magnetization and specific heat, Phys. Rev. B, Volume 79 (2009), p. 020508

[33] U. Welp; G. Mu; R. Xie; A.E. Koshelev; W.K. Kwok; H.Q. Luo; Z.S. Wang; P. Cheng; L. Fang; C. Ren; H.H. Wen Specific heat and phase diagrams of single crystal iron pnictide superconductors, Physica C, Volume 69 (2009), pp. 575-581

[34] H.Q. Yuan; J. Singleton; F.F. Balakirev; S.A. Baily; G.F. Chen; J.L. Luo; N.L. Wang Nearly isotropic superconductivity in (Ba, K)Fe2As2, Nature, Volume 457 (2009), pp. 565-568

[35] A. Serafin; A.I. Coldea; A.Y. Ganin; M.J. Rosseinsky; K. Prassides; D. Vignolles; A. Carrington Anisotropic fluctuations and quasiparticle excitations in FeSe0.5Te0.5, Phys. Rev. B, Volume 82 (2010), p. 104514

[36] Y. Kohama; C. Marcenat; T. Klein; M. Jaime AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields, Rev. Sci. Inst., Volume 81 (2010), p. 104902

[37] F. Hunte; J. Jaroszynski; A. Gurevich; D.C. Larbalestier; R. Jin; A.S. Sefat; M.A. McGuire; B.C. Sales; D.K. Christen; D. Mandrus Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields, Nature, Volume 453 (2008), pp. 903-905

[38] G. Fuchs; S.-L. Drechsler; N. Kozlova; M. Bartkowiak; J.E. Hamann-Borrero; G. Behr; K. Nenkov; H.-H. Klauss; H. Maeter; A. Amato; H. Luetkens; A. Kwadrin; R. Khasanov; J. Freudenberger; A. Köhler; M. Knupfer; E. Arushanov; H. Rosner; B. Büchner; L. Schultz Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors, New J. Phys., Volume 11 (2009), p. 075007

[39] S.A. Baily; Y. Kohama; H. Hiramatsu; B. Maiorov; F.F. Balakirev; M. Hirano; H. Hosono Pseudoisotropic upper critical field in cobalt-doped SrFe2As2 epitaxial films, Phys. Rev. Lett., Volume 102 (2009), p. 117004

[40] L. Jiao; J.L. Zhang; F.F. Balakirev; G.F. Chen; J.L. Luo; N.L. Wang; H.Q. Yuan Upper critical field of the 122-type iron pnictide superconductors, J. Phys. Chem. Solids, Volume 72 (2011), pp. 423-425

[41] A. Tamai; A.Y. Ganin; E. Rozbicki; J. Bacsa; W. Meevasana; P.D.C. King; M. Caffio; R. Schaub; S. Margadonna; K. Prassides; M.J. Rosseinsky; F. Baumberger Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 104 (2010), p. 097002

[42] Seunghyun Khim; Jun Sung Kim; Jae Wook Kim; Suk Ho Lee; F. Balakirev; Yunkyu Bang; Kee Hoon Kim Nearly isotropic upper critical fields in a SrFe1.85Co0.15As2 single crystal, Physica C (2010), p. S317-S319

[43] Hechang Lei; Rongwei Hu; E. Choi; J. Warren; C. Petrovic Pauli-limited upper critical field of Fe1 + yTe1 − xSex, Phys. Rev. B, Volume 81 (2010), p. 094518

[44] S. Khim; B. Lee; J.W. Kim; E.S. Choi; G.R. Stewart; K.H. Kim Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal, Phys. Rev. B, Volume 84 (2011), p. 104502

[45] V.A. Gasparov; L. Drigo; A. Audouard; D.L. Sun; C.T. Lin; S.L. Budʼko; P.C. Canfield; F.W. Fabris; J. Wosnitza Upper critical magnetic field in Ba0.68K0.32Fe2As2 and Ba(Fe0.93Co0.07)2As2, JETP Lett., Volume 93 (2011), pp. 667-672

[46] N. Hussey; M. Abdel-Jawad; A. Carrington; A. Mackenzie; L. Balicas A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor, Nature, Volume 425 (2003), pp. 814-817

[47] M. Abdel-Jawad; M.P. Kennett; L. Balicas; A. Carrington; A.P. Mackenzie; R.H. McKenzie; N.E. Hussey Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor, Nature Phys., Volume 2 (2006), pp. 821-825

[48] M. Abdel-Jawad; J.G. Analytis; L. Balicas; A. Carrington; J.P.H. Charmant; M.M.J. French; N.E. Hussey Correlation between the superconducting transition temperature and anisotropic quasiparticle scattering in Tl2Ba2CuO6 + δ, Phys. Rev. Lett., Volume 99 (2007), p. 107002

[49] S. Blundell; J. Singleton Angle-dependent magnetoresistance in organic metals, J. Phys. I, Volume 6 (1996), pp. 1837-1847

[50] M. Kimata; T. Terashima; N. Kurita; H. Satsukawa; A. Harada; K. Kodama; A. Sato; M. Imai; K. Kihou; C.H. Lee; H. Kito; H. Eisaki; A. Iyo; T. Saito; H. Fukazawa; Y. Kohori; H. Harima; S. Uji Quasi-two-dimensional Fermi surfaces and coherent interlayer transport in KFe(2)As(2), Phys. Rev. Lett., Volume 105 (2010), p. 246403

[51] K. Yamaji On the angle dependence of the magnetoresistance in quasi-2-dimensional organic superconductors, J. Phys. Soc. Jpn., Volume 58 (1989), p. 1520

[52] Brendan Arnold, Ph.D. thesis, University of Bristol, 2012.

[53] B.J. Arnold; S. Kasahara; A.I. Coldea; T. Terashima; Y. Matsuda; T. Shibauchi; A. Carrington Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe2P2, Phys. Rev. B, Volume 83 (2011), p. 220504

[54] J.G. Analytis; C.M.J. Andrew; A.I. Coldea; A. McCollam; J.-H. Chu; R.D. McDonald; I.R. Fisher; A. Carrington Fermi surface of SrFe2P2 determined by the de Haas–van Alphen effect, Phys. Rev. Lett., Volume 103 (2009), p. 076401

[55] A.I. Coldea; C.M.J. Andrew; J.G. Analytis; R.D. McDonald; A.F. Bangura; J.-H. Chu; I.R. Fisher; A. Carrington Topological change of the Fermi surface in ternary iron pnictides with reduced c/a ratio: A de Haas–van Alphen study of CaFe2P2, Phys. Rev. Lett., Volume 103 (2009), p. 026404

[56] M. Yi; D.H. Lu; J.G. Analytis; J.-H. Chu; S.-K. Mo; R.-H. He; M. Hashimoto; R.G. Moore; I.I. Mazin; D.J. Singh; Z. Hussain; I.R. Fisher; Z.-X. Shen Unconventional electronic reconstruction in undoped (Ba, Sr)Fe2As2 across the spin density wave transition, Phys. Rev. B, Volume 80 (2009), p. 174510

[57] J.G. Analytis; R.D. Mcdonald; J.H. Chu; S.C. Riggs; A.F. Bangura; C. Kucharczyk; M. Johannes; I.R. Fisher Quantum oscillations in the parent pnictide BaFe2As2: Itinerant electrons in the reconstructed state, Phys. Rev. B, Volume 80 (2009), p. 064507

[58] T. Terashima; N. Kurita; M. Tomita; K. Kihou; C.-H. Lee; Y. Tomioka; T. Ito; A. Iyo; H. Eisaki; T. Liang; M. Nakajima; S. Ishida; S.-i. Uchida; H. Harima; S. Uji Complete Fermi surface in BaFe2As2 observed via Shubnikov–de Haas oscillation measurements on detwinned single crystals, Phys. Rev. Lett., Volume 107 (2011), p. 176402

[59] S.E. Sebastian; J. Gillett; N. Harrison; P.H.C. Lau; D.J. Singh; C.H. Mielke; G.G. Lonzarich Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor, J. Phys. Condens. Matter., Volume 20 (2008), p. 422203

[60] N. Harrison; R.D. Mcdonald; C.H. Mielke; E.D. Bauer; F. Ronning; J.D. Thompson Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of superconductivity, J. Phys. Condens. Matter., Volume 21 (2009), p. 322202

[61] L. Boeri; O.V. Dolgov; A.A. Golubov Electron–phonon properties of pnictide superconductors, Physica C, Volume 469 (2009), pp. 628-634

[62] H. Takahashi; K. Ando; Y. Shirakawabe Self-sensing piezoresistive cantilever and its magnetic force microscopy applications, Ultramicroscopy, Volume 91 (2002), pp. 63-72

[63] L. Ortenzi; E. Cappelluti; L. Benfatto; L. Pietronero Fermi-surface shrinking and interband coupling in iron-based pnictides, Phys. Rev. Lett., Volume 103 (2009), p. 046404

[64] C. Putzke; A.I. Coldea; I. Guillamón; D. Vignolles; A. McCollam; D. LeBoeuf; M.D. Watson; I.I. Mazin; S. Kasahara; T. Terashima; T. Shibauchi; Y. Matsuda; A. Carrington de Haas–van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs, Phys. Rev. Lett., Volume 108 (2012), p. 047002

[65] H. Shishido; A.F. Bangura; A.I. Coldea; S. Tonegawa; K. Hashimoto; S. Kasahara; P.M.C. Rourke; H. Ikeda; T. Terashima; R. Settai; Y. Onuki; D. Vignolles; C. Proust; B. Vignolle; A. McCollam; Y. Matsuda; T. Shibauchi; A. Carrington Evolution of the Fermi surface of BaFe2(As1 − xPx)2 on entering the superconducting dome, Phys. Rev. Lett., Volume 104 (2010), p. 057008

[66] H. Sugawara; R. Settai; Y. Doi; H. Muranaka; K. Katayama; H. Yamagami; Y. Onuki de Haas–van Alphen effect in LaFePO with two-dimensional cylindrical Fermi surfaces, J. Phys. Soc. Jpn., Volume 77 (2008), p. 113711

[67] I.R. Shein; A.L. Ivanovskii Electronic properties of novel 6 K superconductor LiFeP in comparison with LiFeAs from first principles calculations, Solid State Commun., Volume 150 (2010), pp. 152-156

[68] J.G. Analytis; J.-H. Chu; R.D. McDonald; S.C. Riggs; I.R. Fisher Enhanced Fermi-surface nesting in superconducting BaFe2(As1 − xPx)2 revealed by the de Haas–van Alphen effect, Phys. Rev. Lett., Volume 105 (2010), p. 207004

[69] H. Shishido; R. Settai; H. Harima; Y. Onuki A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn., Volume 74 (2005), pp. 1103-1106

[70] T. Yoshida; I. Nishi; S. Ideta; A. Fujimori; M. Kubota; K. Ono; S. Kasahara; T. Shibauchi; T. Terashima; Y. Matsuda; H. Ikeda; R. Arita Two-dimensional and three-dimensional Fermi surfaces of superconducting BaFe2(As1 − xPx)2 and their nesting properties revealed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., Volume 106 (2011), p. 117001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Studies of the gap structure of iron-based superconductors using magnetic penetration depth

Antony Carrington

C. R. Phys (2011)


Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors

Peter J. Hirschfeld

C. R. Phys (2016)


Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds

Georg Knebel; Dai Aoki; Jacques Flouquet

C. R. Phys (2011)