[Sonder par la microscopie à SQUID la symétrie du paramètre dʼordre des cuprates supraconducteurs à haute température critique]
La nature de la composante orbitale du paramètre dʼordre dans les cuprates à haute est maintenant bien établie, en grande partie grâce à des expériences sensibles à la phase de la fonction dʼonde du condensat supraconducteur. Dans cet article de revue, on décrit les développements de la microscopie à SQUID qui ont permis de réaliser ces tests dans les cuprates, en identifiant les facteurs qui ont favorisé ces expériences : elles ne seront peut-être pas facilement généralisables à court terme à dʼautres supraconducteurs non conventionnels, qui ne possèdent pas les propriétés physiques et cristallographiques des cuprates qui y étaient favorables.
The orbital component of the order parameter in the cuprate high- cuprate superconductors is now well established, in large part because of phase sensitive tests. Although it would be desirable to use such tests on other unconventional superconductors, there are a number of favorable factors associated with the properties of the cuprates, and a number of technical advances, that were required for these tests to be successful. In this review I will describe the development of phase sensitive pairing symmetry tests using SQUID microscopy, underlining the factors favoring these experiments in the cuprates and the technical advances that had to be made.
Mot clés : Microscopie SQUID, Appariement symétrie, Haute $ {\mathrm{T}}_{c}$, Supraconducteurs non conventionnels
John R. Kirtley 1
@article{CRPHYS_2011__12_5-6_436_0, author = {John R. Kirtley}, title = {Probing the order parameter symmetry in the cuprate high temperature superconductors by {SQUID} microscopy}, journal = {Comptes Rendus. Physique}, pages = {436--445}, publisher = {Elsevier}, volume = {12}, number = {5-6}, year = {2011}, doi = {10.1016/j.crhy.2011.03.003}, language = {en}, }
TY - JOUR AU - John R. Kirtley TI - Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy JO - Comptes Rendus. Physique PY - 2011 SP - 436 EP - 445 VL - 12 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2011.03.003 LA - en ID - CRPHYS_2011__12_5-6_436_0 ER -
John R. Kirtley. Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 436-445. doi : 10.1016/j.crhy.2011.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.003/
[1] Possible high superconductivity in the Ba–La–Cu–O system, Z. Phys. B: Condens. Matter, Volume 64 (1986), pp. 189-193
[2] Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett., Volume 58 (1987) no. 9, pp. 908-910 | DOI
[3] The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198
[4] Pairing interaction in two-dimensional CuO2, Phys. Rev. Lett., Volume 60 (1988) no. 16, pp. 1668-1671 | DOI
[5] Mechanism for high-temperature superconductivity, Phys. Rev. B, Volume 38 (1988) no. 7, pp. 4547-4556
[6] Spin-bag mechanism of high-temperature superconductivity, Phys. Rev. Lett., Volume 60 (1988) no. 10, pp. 944-947
[7] Phenomenology of the normal state of Cu–O high-temperature superconductors, Phys. Rev. Lett., Volume 63 (1989) no. 18, pp. 1996-1999
[8] Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides, Phys. Rev. B, Volume 46 (1992) no. 22, pp. 14803-14817
[9] Van Hove scenario for d-wave superconductivity in cuprates, Phys. Rev. B, Volume 52 (1995) no. 18, pp. 13611-13618
[10] Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism, Phys. Rev. B, Volume 58 (1998) no. 13, pp. 8222-8224
[11] d-Wave pairing near a spin-density-wave instability, Phys. Rev. B, Volume 34 (1986) no. 11, pp. 8190-8192 | DOI
[12] Why is of the oxide superconductors so low?, Phys. Rev. Lett., Volume 58 (1987) no. 25, pp. 2691-2694 | DOI
[13] Superconducting instability in the large-U limit of the two-dimensional Hubbard model, Z. Phys. B: Condens Matter, Volume 68 (1987) no. 4, pp. 425-432
[14] Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys., Volume 63 (1991) no. 2, pp. 239-311
[15] The case for pairing in the cuprate superconductors, Phys. Rep., Volume 250 (1995) no. 6, pp. 329-365 http://www.sciencedirect.com/science/article/B6TVP-3YGTS3W-J/2/a12e24ad182a49e17a135317be3e9e99 | DOI
[16] Superconducting system with weak coupling to the current in the ground state, Sov. J. Exp. Theoret. Phys. Lett., Volume 25 (1977), p. 290
[17] Vortices with half magnetic flux quanta in “heavy-fermion” superconductors, Phys. Rev. B, Volume 36 (1987) no. 1, pp. 235-238 | DOI
[18] Paramagnetic effect in high Tc superconductors-A hint for d-wave superconductivity, J. Phys. Soc. Jpn., Volume 61 (1992), pp. 4283-4286
[19] Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2134-2137 | DOI
[20] Evidence for pairing from the magnetic field modulation of YBa2Cu3O7 − δ–Pb Josephson junctions, Phys. Rev. Lett., Volume 74 (1995) no. 5, pp. 797-800 | DOI
[21] Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for symmetry, Rev. Mod. Phys., Volume 67 (1995) no. 2, pp. 515-535 | DOI
[22] Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 593-596 | DOI
[23] Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000) no. 4, p. 969 | DOI
[24] Evidence for an unconventional superconducting order parameter in YBa2Cu3O6.9, Phys. Rev. B, Volume 50 (1994) no. 9, pp. 6530-6533 | DOI
[25] The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys., Volume 75 (2003) no. 2, pp. 657-712 | DOI
[26] Pairing symmetry and pairing state in ferropnictides: Theoretical overview, Phys. C Supercond., Volume 469 (2009) no. 9–12, pp. 614-627
[27] Josephson tunneling in high- superconductors, Phys. Rev. B, Volume 54 (1996) no. 1, pp. 588-601
[28] Comment on “Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs”, Phys. Rev. Lett., Volume 73 (1994) no. 13, p. 1871
[29] What is the symmetry of the high- order parameter?, Internat. J. Mod. Phys. B, Volume 12 (1998), pp. 2920-2931
[30] Magnetic properties of annular Josephson junctions for radiation detection: Experimental results, Appl. Phys. Lett., Volume 74 (1999), p. 3389
[31] Design and realization of an all d-wave dc π-superconducting quantum interference device, Appl. Phys. Lett., Volume 76 (2000), p. 912
[32] Angle-resolved phase-sensitive determination of the in-plane symmetry in YBa2Cu3O7 − δ, Nature Phys., Volume 2 (2006) no. 5, pp. 190-194
[33] Grain boundaries in high- superconductors, Rev. Mod. Phys., Volume 74 (2002) no. 2, pp. 485-549 | DOI
[34] Enhanced transparency ramp-type Josephson contacts through interlayer deposition, Appl. Phys. Lett., Volume 80 (2002) no. 24, pp. 4579-4581 http://link.aip.org/link/?APL/80/4579/1 | DOI
[35] Monocrystalline YBa2Cu3O7 − x thin films on vicinal SrTiO3 (001) substrates, Appl. Phys. Lett., Volume 83 (2003) no. 25, pp. 5199-5201 http://link.aip.org/link/?APL/83/5199/1 | DOI
[36] Probable observation of the Josephson superconducting tunneling effect, Phys. Rev. Lett., Volume 10 (1963) no. 6, pp. 230-232 | DOI
[37] Quantum interference effects in Josephson tunneling, Phys. Rev. Lett., Volume 12 (1964) no. 7, pp. 159-160 | DOI
[38] Quantized flux pinning in superconducting niobium, Phys. Rev. Lett., Volume 13 (1964) no. 4, pp. 125-126
[39] F.P. Rogers, A device for experimental observation of flux vortices trapped in superconducting thin films, Masterʼs thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.
[40] One-dimensional magnetic flux microscope based on the dc superconducting quantum interference device, Appl. Phys. Lett., Volume 61 (1992) no. 5, pp. 598-600 http://link.aip.org/link/?APL/61/598/1 | DOI
[41] Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device, Appl. Phys. Lett., Volume 62 (1993) no. 17, pp. 2128-2130 http://link.aip.org/link/?APL/62/2128/1 | DOI
[42] Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy, Appl. Phys. Lett., Volume 63 (1993) no. 12, pp. 1693-1695
[43] Design and implementation of a scanning SQUID microscope, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1918-1921 | DOI
[44] A high resolution imaging susceptometer, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1941-1944 | DOI
[45] High-resolution scanning SQUID microscope, Appl. Phys. Lett., Volume 66 (1995) no. 9, pp. 1138-1140 http://link.aip.org/link/?APL/66/1138/1 | DOI
[46] Experimental evidence of the Néel–Brown model of magnetization reversal, Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1791-1794 | DOI
[47] Scanning μ-superconduction quantum interference device force microscope, Rev. Sci. Instrum., Volume 73 (2002), p. 3825
[48] NanoSQUIDs based on niobium constrictions, Nano Lett., Volume 7 (2007) no. 7, pp. 2152-2156
[49] An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications, Nanotechnology, Volume 19 (2008) no. 27, pp. 275501-275600
[50] Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam, Appl. Phys. Lett., Volume 92 (2008), p. 192507
[51] Self-aligned nanoscale SQUID on a tip, Nano Lett. (2010), p. 329
[52] Design and performance aspects of pickup loop structures for miniature SQUID magnetometry, IEEE Trans. Appl. Supercond., Volume 5 (1995) no. 2, pp. 2133-2136
[53] High quality refractory Josephson tunnel junctions utilizing thin aluminum layers, Appl. Phys. Lett., Volume 42 (1983) no. 5, pp. 472-474 http://link.aip.org/link/?APL/42/472/1 | DOI
[54] A terraced scanning superconducting quantum interference device susceptometer with sub-micron pickup loops, Appl. Phys. Lett., Volume 93 (2008), p. 243101
[55] Scanning superconducting quantum interference device susceptometry, Rev. Sci. Instrum., Volume 72 (2001) no. 5, pp. 2361-2364 http://link.aip.org/link/?RSI/72/2361/1 | DOI
[56] Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples, Rev. Sci. Instrum., Volume 79 (2008) no. 5, p. 053704 http://link.aip.org/link/?RSI/79/053704/1 | DOI
[57] Variable sample temperature scanning superconducting quantum interference device microscope, Appl. Phys. Lett., Volume 74 (1999), p. 4011
[58] Symmetry of the order parameter in the high- superconductor YBa2Cu3O7 − δ, Nature, Volume 373 (1995), p. 225
[59] Direct imaging of integer and half-integer Josephson vortices in high- grain boundaries, Phys. Rev. Lett., Volume 76 (1996), p. 1336
[60] Half-integer flux quantum effect in tricrystal Bi2Sr2CaCu2O8 + δ, Europhys. Lett., Volume 36 (1996), p. 707
[61] Half-integer flux quantum effect and pairing symmetry in high- tetragonal Tl2Ba2CuO6 + δ films, Science, Volume 272 (1996), p. 329
[62] Robust pairing symmetry in hole-doped cuprate superconductors, Phys. Rev. Lett., Volume 93 (2004) no. 18, p. 187004 | DOI
[63] Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors, Phys. Rev. Lett., Volume 85 (2000) no. 1, pp. 182-185 | DOI
[64] Experimental proof of a time-reversal-invariant order parameter with a π shift in YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 74 (1995) no. 22, pp. 4523-4526 | DOI
[65] Temperature dependence of half flux quantum in YBa2Cu3O7 − y tricrystal thin film observed by scanning SQUID microscopy, Phys. C Supercond., Volume 367 (2002) no. 1–4, pp. 28-32 http://www.sciencedirect.com/science/article/B6TVJ-44T8FBX-6/2/b4ca9c697502d1ec315eb2e63743849d | DOI
[66] Interplay between static and dynamic properties of semifluxons in YBa2Cu3O7 − δ 0–π Josephson junctions, Phys. Rev. Lett., Volume 104 (2010), p. 177003
[67] Temperature dependence of the half-integer magnetic flux quantum, Science, Volume 285 (1999), p. 1373
[68] Fractional vortices as evidence of time-reversal symmetry breaking in high-temperature superconductors, Phys. Rev. Lett., Volume 74 (1995) no. 16, pp. 3249-3252
[69] Time-reversal symmetry breaking states in high-temperature superconductors, Progr. Theoret. Phys., Volume 99 (1998) no. 6, pp. 899-929
[70] Observation of surface-induced broken time-reversal symmetry in YBa2Cu3O7 tunnel junctions, Phys. Rev. Lett., Volume 79 (1997), pp. 277-280
[71] Angular dependence of the symmetry of the order parameter in YBa2Cu3O7 − δ, IEEE Trans. Appl. Supercond., Volume 7 (1997) no. 2, pp. 2331-2334
[72] Extending SQUID interferometry beyond the cuprates and beyond d-wave symmetry, Phys. C Supercond., Volume 317 (1999), pp. 410-420
[73] Intrinsic d-wave effects in YBa2Cu3O7 − δ grain boundary Josephson junctions, Phys. Rev. Lett., Volume 89 (2002) no. 20, p. 207001 | DOI
[74] Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling, Phys. Rev. Lett., Volume 95 (2005) no. 25, p. 257001 | DOI
[75] Observation of Josephson pair tunneling between a high- cuprate (YBa2Cu3O7 − δ) and a conventional superconductor (Pb), Phys. Rev. Lett., Volume 72 (1994) no. 14, pp. 2267-2270
[76] Orthorhombically mixed s- and -wave superconductivity and Josephson tunneling, Phys. Rev. B, Volume 53 (1996), pp. 5835-5838
[77] et al. Pair tunneling from c-axis YBa2Cu3O7 − x to Pb: evidence for s-wave component from microwave induced steps, Phys. Rev. Lett., Volume 76 (1996) no. 12, pp. 2161-2164
[78] Odd-parity superconductivity in Sr2RuO4, Science, Volume 306 (2004) no. 5699, p. 1151
[79] Dynamical superconducting order parameter domains in Sr2RuO4, Science, Volume 314 (2006) no. 5803, p. 1267
[80] Evidence for complex superconducting order parameter symmetry in the low-temperature phase of UPt3 from Josephson interferometry, Phys. Rev. Lett., Volume 103 (2009) no. 19, p. 197002 | DOI
Cité par Sources :
Commentaires - Politique