[Sonder par la microscopie à SQUID la symétrie du paramètre dʼordre des cuprates supraconducteurs à haute température critique]
La nature de la composante orbitale du paramètre dʼordre dans les cuprates à haute
The orbital component of the order parameter in the cuprate high-
Mots-clés : Microscopie SQUID, Appariement symétrie, Haute
John R. Kirtley 1
@article{CRPHYS_2011__12_5-6_436_0, author = {John R. Kirtley}, title = {Probing the order parameter symmetry in the cuprate high temperature superconductors by {SQUID} microscopy}, journal = {Comptes Rendus. Physique}, pages = {436--445}, publisher = {Elsevier}, volume = {12}, number = {5-6}, year = {2011}, doi = {10.1016/j.crhy.2011.03.003}, language = {en}, }
TY - JOUR AU - John R. Kirtley TI - Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy JO - Comptes Rendus. Physique PY - 2011 SP - 436 EP - 445 VL - 12 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2011.03.003 LA - en ID - CRPHYS_2011__12_5-6_436_0 ER -
John R. Kirtley. Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy. Comptes Rendus. Physique, Superconductivity of strongly correlated systems, Volume 12 (2011) no. 5-6, pp. 436-445. doi : 10.1016/j.crhy.2011.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.003/
[1] Possible high
[2] Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett., Volume 58 (1987) no. 9, pp. 908-910 | DOI
[3] The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198
[4] Pairing interaction in two-dimensional CuO2, Phys. Rev. Lett., Volume 60 (1988) no. 16, pp. 1668-1671 | DOI
[5] Mechanism for high-temperature superconductivity, Phys. Rev. B, Volume 38 (1988) no. 7, pp. 4547-4556
[6] Spin-bag mechanism of high-temperature superconductivity, Phys. Rev. Lett., Volume 60 (1988) no. 10, pp. 944-947
[7] Phenomenology of the normal state of Cu–O high-temperature superconductors, Phys. Rev. Lett., Volume 63 (1989) no. 18, pp. 1996-1999
[8] Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides, Phys. Rev. B, Volume 46 (1992) no. 22, pp. 14803-14817
[9] Van Hove scenario for d-wave superconductivity in cuprates, Phys. Rev. B, Volume 52 (1995) no. 18, pp. 13611-13618
[10] Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism, Phys. Rev. B, Volume 58 (1998) no. 13, pp. 8222-8224
[11] d-Wave pairing near a spin-density-wave instability, Phys. Rev. B, Volume 34 (1986) no. 11, pp. 8190-8192 | DOI
[12] Why is
[13] Superconducting instability in the large-U limit of the two-dimensional Hubbard model, Z. Phys. B: Condens Matter, Volume 68 (1987) no. 4, pp. 425-432
[14] Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys., Volume 63 (1991) no. 2, pp. 239-311
[15] The case for
[16] Superconducting system with weak coupling to the current in the ground state, Sov. J. Exp. Theoret. Phys. Lett., Volume 25 (1977), p. 290
[17] Vortices with half magnetic flux quanta in “heavy-fermion” superconductors, Phys. Rev. B, Volume 36 (1987) no. 1, pp. 235-238 | DOI
[18] Paramagnetic effect in high Tc superconductors-A hint for d-wave superconductivity, J. Phys. Soc. Jpn., Volume 61 (1992), pp. 4283-4286
[19] Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2134-2137 | DOI
[20] Evidence for
[21] Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for
[22] Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 593-596 | DOI
[23] Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000) no. 4, p. 969 | DOI
[24] Evidence for an unconventional superconducting order parameter in YBa2Cu3O6.9, Phys. Rev. B, Volume 50 (1994) no. 9, pp. 6530-6533 | DOI
[25] The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys., Volume 75 (2003) no. 2, pp. 657-712 | DOI
[26] Pairing symmetry and pairing state in ferropnictides: Theoretical overview, Phys. C Supercond., Volume 469 (2009) no. 9–12, pp. 614-627
[27] Josephson tunneling in high-
[28] Comment on “Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs”, Phys. Rev. Lett., Volume 73 (1994) no. 13, p. 1871
[29] What is the symmetry of the high-
[30] Magnetic properties of annular Josephson junctions for radiation detection: Experimental results, Appl. Phys. Lett., Volume 74 (1999), p. 3389
[31] Design and realization of an all d-wave dc π-superconducting quantum interference device, Appl. Phys. Lett., Volume 76 (2000), p. 912
[32] Angle-resolved phase-sensitive determination of the in-plane symmetry in YBa2Cu3O7 − δ, Nature Phys., Volume 2 (2006) no. 5, pp. 190-194
[33] Grain boundaries in high-
[34] Enhanced transparency ramp-type Josephson contacts through interlayer deposition, Appl. Phys. Lett., Volume 80 (2002) no. 24, pp. 4579-4581 http://link.aip.org/link/?APL/80/4579/1 | DOI
[35] Monocrystalline YBa2Cu3O7 − x thin films on vicinal SrTiO3 (001) substrates, Appl. Phys. Lett., Volume 83 (2003) no. 25, pp. 5199-5201 http://link.aip.org/link/?APL/83/5199/1 | DOI
[36] Probable observation of the Josephson superconducting tunneling effect, Phys. Rev. Lett., Volume 10 (1963) no. 6, pp. 230-232 | DOI
[37] Quantum interference effects in Josephson tunneling, Phys. Rev. Lett., Volume 12 (1964) no. 7, pp. 159-160 | DOI
[38] Quantized flux pinning in superconducting niobium, Phys. Rev. Lett., Volume 13 (1964) no. 4, pp. 125-126
[39] F.P. Rogers, A device for experimental observation of flux vortices trapped in superconducting thin films, Masterʼs thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.
[40] One-dimensional magnetic flux microscope based on the dc superconducting quantum interference device, Appl. Phys. Lett., Volume 61 (1992) no. 5, pp. 598-600 http://link.aip.org/link/?APL/61/598/1 | DOI
[41] Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device, Appl. Phys. Lett., Volume 62 (1993) no. 17, pp. 2128-2130 http://link.aip.org/link/?APL/62/2128/1 | DOI
[42] Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy, Appl. Phys. Lett., Volume 63 (1993) no. 12, pp. 1693-1695
[43] Design and implementation of a scanning SQUID microscope, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1918-1921 | DOI
[44] A high resolution imaging susceptometer, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1941-1944 | DOI
[45] High-resolution scanning SQUID microscope, Appl. Phys. Lett., Volume 66 (1995) no. 9, pp. 1138-1140 http://link.aip.org/link/?APL/66/1138/1 | DOI
[46] Experimental evidence of the Néel–Brown model of magnetization reversal, Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1791-1794 | DOI
[47] Scanning μ-superconduction quantum interference device force microscope, Rev. Sci. Instrum., Volume 73 (2002), p. 3825
[48] NanoSQUIDs based on niobium constrictions, Nano Lett., Volume 7 (2007) no. 7, pp. 2152-2156
[49] An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications, Nanotechnology, Volume 19 (2008) no. 27, pp. 275501-275600
[50] Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam, Appl. Phys. Lett., Volume 92 (2008), p. 192507
[51] Self-aligned nanoscale SQUID on a tip, Nano Lett. (2010), p. 329
[52] Design and performance aspects of pickup loop structures for miniature SQUID magnetometry, IEEE Trans. Appl. Supercond., Volume 5 (1995) no. 2, pp. 2133-2136
[53] High quality refractory Josephson tunnel junctions utilizing thin aluminum layers, Appl. Phys. Lett., Volume 42 (1983) no. 5, pp. 472-474 http://link.aip.org/link/?APL/42/472/1 | DOI
[54] A terraced scanning superconducting quantum interference device susceptometer with sub-micron pickup loops, Appl. Phys. Lett., Volume 93 (2008), p. 243101
[55] Scanning superconducting quantum interference device susceptometry, Rev. Sci. Instrum., Volume 72 (2001) no. 5, pp. 2361-2364 http://link.aip.org/link/?RSI/72/2361/1 | DOI
[56] Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples, Rev. Sci. Instrum., Volume 79 (2008) no. 5, p. 053704 http://link.aip.org/link/?RSI/79/053704/1 | DOI
[57] Variable sample temperature scanning superconducting quantum interference device microscope, Appl. Phys. Lett., Volume 74 (1999), p. 4011
[58] Symmetry of the order parameter in the high-
[59] Direct imaging of integer and half-integer Josephson vortices in high-
[60] Half-integer flux quantum effect in tricrystal Bi2Sr2CaCu2O8 + δ, Europhys. Lett., Volume 36 (1996), p. 707
[61] Half-integer flux quantum effect and pairing symmetry in high-
[62] Robust
[63] Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors, Phys. Rev. Lett., Volume 85 (2000) no. 1, pp. 182-185 | DOI
[64] Experimental proof of a time-reversal-invariant order parameter with a π shift in YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 74 (1995) no. 22, pp. 4523-4526 | DOI
[65] Temperature dependence of half flux quantum in YBa2Cu3O7 − y tricrystal thin film observed by scanning SQUID microscopy, Phys. C Supercond., Volume 367 (2002) no. 1–4, pp. 28-32 http://www.sciencedirect.com/science/article/B6TVJ-44T8FBX-6/2/b4ca9c697502d1ec315eb2e63743849d | DOI
[66] Interplay between static and dynamic properties of semifluxons in YBa2Cu3O7 − δ 0–π Josephson junctions, Phys. Rev. Lett., Volume 104 (2010), p. 177003
[67] Temperature dependence of the half-integer magnetic flux quantum, Science, Volume 285 (1999), p. 1373
[68] Fractional vortices as evidence of time-reversal symmetry breaking in high-temperature superconductors, Phys. Rev. Lett., Volume 74 (1995) no. 16, pp. 3249-3252
[69] Time-reversal symmetry breaking states in high-temperature superconductors, Progr. Theoret. Phys., Volume 99 (1998) no. 6, pp. 899-929
[70] Observation of surface-induced broken time-reversal symmetry in YBa2Cu3O7 tunnel junctions, Phys. Rev. Lett., Volume 79 (1997), pp. 277-280
[71] Angular dependence of the symmetry of the order parameter in YBa2Cu3O7 − δ, IEEE Trans. Appl. Supercond., Volume 7 (1997) no. 2, pp. 2331-2334
[72] Extending SQUID interferometry beyond the cuprates and beyond d-wave symmetry, Phys. C Supercond., Volume 317 (1999), pp. 410-420
[73] Intrinsic d-wave effects in YBa2Cu3O7 − δ grain boundary Josephson junctions, Phys. Rev. Lett., Volume 89 (2002) no. 20, p. 207001 | DOI
[74] Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling, Phys. Rev. Lett., Volume 95 (2005) no. 25, p. 257001 | DOI
[75] Observation of Josephson pair tunneling between a high-
[76] Orthorhombically mixed s- and
[77] et al. Pair tunneling from c-axis YBa2Cu3O7 − x to Pb: evidence for s-wave component from microwave induced steps, Phys. Rev. Lett., Volume 76 (1996) no. 12, pp. 2161-2164
[78] Odd-parity superconductivity in Sr2RuO4, Science, Volume 306 (2004) no. 5699, p. 1151
[79] Dynamical superconducting order parameter domains in Sr2RuO4, Science, Volume 314 (2006) no. 5803, p. 1267
[80] Evidence for complex superconducting order parameter symmetry in the low-temperature phase of UPt3 from Josephson interferometry, Phys. Rev. Lett., Volume 103 (2009) no. 19, p. 197002 | DOI
- Frustration-driven Josephson phase dynamics, Physical Review B, Volume 105 (2022) no. 13 | DOI:10.1103/physrevb.105.134503
- Anomalous Josephson coupling and high-harmonics in non-centrosymmetric superconductors with S-wave spin-triplet pairing, npj Quantum Materials, Volume 7 (2022) no. 1 | DOI:10.1038/s41535-022-00509-8
- Pairing correlations in the cuprates: A numerical study of the three-band Hubbard model, Physical Review B, Volume 103 (2021) no. 14 | DOI:10.1103/physrevb.103.144514
- Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine, Inorganics, Volume 8 (2020) no. 1, p. 6 | DOI:10.3390/inorganics8010006
- Break-junction tunneling spectra of Bi2212 superconducting ceramics: Influence of inhomogeneous d-wave-Cooper-pairing and charge-density-wave order parameters, Low Temperature Physics, Volume 46 (2020) no. 4, p. 400 | DOI:10.1063/10.0000873
- rf-SQUID measurements of anomalous Josephson effect, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023165
- Quasiparticle conductance-voltage characteristics for break junctions involvingd-wave superconductors: charge-density-wave effects, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 50, p. 505602 | DOI:10.1088/1361-648x/aa9867
- How does the break-junction quasiparticle tunnel conductance look like for d-wave superconductors?, Low Temperature Physics, Volume 43 (2017) no. 10, p. 1172 | DOI:10.1063/1.5008408
- Multilayered cuprate superconductor Ba2Ca5Cu6O12(O1−x,Fx)2 studied by temperature-dependent scanning tunneling microscopy and spectroscopy, Physical Review B, Volume 95 (2017) no. 17 | DOI:10.1103/physrevb.95.174508
- Influence of the spatially inhomogeneous gap distribution on the quasiparticle current inc-axis junctions involvingd-wave superconductors with charge density waves, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 44, p. 445701 | DOI:10.1088/0953-8984/28/44/445701
- Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations, Physics Reports, Volume 614 (2016), p. 1 | DOI:10.1016/j.physrep.2015.12.001
- Stationary Josephson current as a tool to detect charge density waves in high-Tc oxides, Physica C: Superconductivity and its Applications, Volume 516 (2015), p. 62 | DOI:10.1016/j.physc.2015.06.014
- Stationary Josephson current in junctions involving d-wave superconductors with charge density waves: the temperature dependence and deviations from the law of corresponding states, The European Physical Journal B, Volume 87 (2014) no. 5 | DOI:10.1140/epjb/e2014-41063-0
- dc Josephson current ford-wave superconductors with charge density waves, Low Temperature Physics, Volume 38 (2012) no. 4, p. 326 | DOI:10.1063/1.3702586
Cité par 14 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier