Comptes Rendus
Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy
[Sonder par la microscopie à SQUID la symétrie du paramètre dʼordre des cuprates supraconducteurs à haute température critique]
Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 436-445.

La nature de la composante orbitale du paramètre dʼordre dans les cuprates à haute Tc est maintenant bien établie, en grande partie grâce à des expériences sensibles à la phase de la fonction dʼonde du condensat supraconducteur. Dans cet article de revue, on décrit les développements de la microscopie à SQUID qui ont permis de réaliser ces tests dans les cuprates, en identifiant les facteurs qui ont favorisé ces expériences : elles ne seront peut-être pas facilement généralisables à court terme à dʼautres supraconducteurs non conventionnels, qui ne possèdent pas les propriétés physiques et cristallographiques des cuprates qui y étaient favorables.

The orbital component of the order parameter in the cuprate high-Tc cuprate superconductors is now well established, in large part because of phase sensitive tests. Although it would be desirable to use such tests on other unconventional superconductors, there are a number of favorable factors associated with the properties of the cuprates, and a number of technical advances, that were required for these tests to be successful. In this review I will describe the development of phase sensitive pairing symmetry tests using SQUID microscopy, underlining the factors favoring these experiments in the cuprates and the technical advances that had to be made.

Publié le :
DOI : 10.1016/j.crhy.2011.03.003
Keywords: SQUID microscopy, Pairing symmetry, High-$ {\mathrm{T}}_{c}$, Unconventional superconductors
Mot clés : Microscopie SQUID, Appariement symétrie, Haute $ {\mathrm{T}}_{c}$, Supraconducteurs non conventionnels
John R. Kirtley 1

1 Center for Probing the Nanoscale, Stanford University, Stanford, CA 93404, USA
@article{CRPHYS_2011__12_5-6_436_0,
     author = {John R. Kirtley},
     title = {Probing the order parameter symmetry in the cuprate high temperature superconductors by {SQUID} microscopy},
     journal = {Comptes Rendus. Physique},
     pages = {436--445},
     publisher = {Elsevier},
     volume = {12},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crhy.2011.03.003},
     language = {en},
}
TY  - JOUR
AU  - John R. Kirtley
TI  - Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 436
EP  - 445
VL  - 12
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.03.003
LA  - en
ID  - CRPHYS_2011__12_5-6_436_0
ER  - 
%0 Journal Article
%A John R. Kirtley
%T Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy
%J Comptes Rendus. Physique
%D 2011
%P 436-445
%V 12
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2011.03.003
%G en
%F CRPHYS_2011__12_5-6_436_0
John R. Kirtley. Probing the order parameter symmetry in the cuprate high temperature superconductors by SQUID microscopy. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 436-445. doi : 10.1016/j.crhy.2011.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.003/

[1] J.G. Bednorz; K.A. Müller Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B: Condens. Matter, Volume 64 (1986), pp. 189-193

[2] M.K. Wu; J.R. Ashburn; C.J. Torng; P.H. Hor; R.L. Meng; L. Gao; Z.J. Huang; Y.Q. Wang; C.W. Chu Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett., Volume 58 (1987) no. 9, pp. 908-910 | DOI

[3] P. Anderson The resonating valence bond state in La2CuO4 and superconductivity, Science, Volume 235 (1987), pp. 1196-1198

[4] J.E. Hirsch; S. Tang; E. Loh; D.J. Scalapino Pairing interaction in two-dimensional CuO2, Phys. Rev. Lett., Volume 60 (1988) no. 16, pp. 1668-1671 | DOI

[5] V. Emery; G. Reiter Mechanism for high-temperature superconductivity, Phys. Rev. B, Volume 38 (1988) no. 7, pp. 4547-4556

[6] J. Schrieffer; X. Wen; S. Zhang Spin-bag mechanism of high-temperature superconductivity, Phys. Rev. Lett., Volume 60 (1988) no. 10, pp. 944-947

[7] C. Varma; P. Littlewood; S. Schmitt-Rink; E. Abrahams; A. Ruckenstein Phenomenology of the normal state of Cu–O high-temperature superconductors, Phys. Rev. Lett., Volume 63 (1989) no. 18, pp. 1996-1999

[8] P. Monthoux; A. Balatsky; D. Pines Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides, Phys. Rev. B, Volume 46 (1992) no. 22, pp. 14803-14817

[9] D. Newns; C. Tsuei; P. Pattnaik Van Hove scenario for d-wave superconductivity in cuprates, Phys. Rev. B, Volume 52 (1995) no. 18, pp. 13611-13618

[10] D. Scalapino; S. White Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism, Phys. Rev. B, Volume 58 (1998) no. 13, pp. 8222-8224

[11] D.J. Scalapino; E. Loh; J.E. Hirsch d-Wave pairing near a spin-density-wave instability, Phys. Rev. B, Volume 34 (1986) no. 11, pp. 8190-8192 | DOI

[12] P.A. Lee; N. Read Why is Tc of the oxide superconductors so low?, Phys. Rev. Lett., Volume 58 (1987) no. 25, pp. 2691-2694 | DOI

[13] C. Gros; R. Joynt; T. Rice Superconducting instability in the large-U limit of the two-dimensional Hubbard model, Z. Phys. B: Condens Matter, Volume 68 (1987) no. 4, pp. 425-432

[14] M. Sigrist; K. Ueda Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys., Volume 63 (1991) no. 2, pp. 239-311

[15] D.J. Scalapino The case for dx2y2 pairing in the cuprate superconductors, Phys. Rep., Volume 250 (1995) no. 6, pp. 329-365 http://www.sciencedirect.com/science/article/B6TVP-3YGTS3W-J/2/a12e24ad182a49e17a135317be3e9e99 | DOI

[16] L. Bulaevskii; V. Kuzii; A. Sobyanin Superconducting system with weak coupling to the current in the ground state, Sov. J. Exp. Theoret. Phys. Lett., Volume 25 (1977), p. 290

[17] V.B. Geshkenbein; A.I. Larkin; A. Barone Vortices with half magnetic flux quanta in “heavy-fermion” superconductors, Phys. Rev. B, Volume 36 (1987) no. 1, pp. 235-238 | DOI

[18] M. Sigrist; T. Rice Paramagnetic effect in high Tc superconductors-A hint for d-wave superconductivity, J. Phys. Soc. Jpn., Volume 61 (1992), pp. 4283-4286

[19] D.A. Wollman; D.J. Van Harlingen; W.C. Lee; D.M. Ginsberg; A.J. Leggett Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2134-2137 | DOI

[20] D.A. Wollman; D.J. Van Harlingen; J. Giapintzakis; D.M. Ginsberg Evidence for dx2y2 pairing from the magnetic field modulation of YBa2Cu3O7 − δ–Pb Josephson junctions, Phys. Rev. Lett., Volume 74 (1995) no. 5, pp. 797-800 | DOI

[21] D.J. Van Harlingen Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for dx2y2 symmetry, Rev. Mod. Phys., Volume 67 (1995) no. 2, pp. 515-535 | DOI

[22] C.C. Tsuei; J.R. Kirtley; C.C. Chi; L.S. Yu-Jahnes; A. Gupta; T. Shaw; J.Z. Sun; M.B. Ketchen Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 73 (1994) no. 4, pp. 593-596 | DOI

[23] C.C. Tsuei; J.R. Kirtley Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., Volume 72 (2000) no. 4, p. 969 | DOI

[24] D.A. Brawner; H.R. Ott Evidence for an unconventional superconducting order parameter in YBa2Cu3O6.9, Phys. Rev. B, Volume 50 (1994) no. 9, pp. 6530-6533 | DOI

[25] A.P. Mackenzie; Y. Maeno The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys., Volume 75 (2003) no. 2, pp. 657-712 | DOI

[26] I. Mazin; J. Schmalian Pairing symmetry and pairing state in ferropnictides: Theoretical overview, Phys. C Supercond., Volume 469 (2009) no. 9–12, pp. 614-627

[27] M. Walker; J. Luettmer-Strathmann Josephson tunneling in high-Tc superconductors, Phys. Rev. B, Volume 54 (1996) no. 1, pp. 588-601

[28] R. Klemm Comment on “Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO–Pb dc SQUIDs”, Phys. Rev. Lett., Volume 73 (1994) no. 13, p. 1871

[29] R. Klemm What is the symmetry of the high-Tc order parameter?, Internat. J. Mod. Phys. B, Volume 12 (1998), pp. 2920-2931

[30] R. Cristiano; E. Esposito; L. Frunzio; M. Lisitskii; C. Nappi; G. Ammendola; A. Barone; L. Parlato; D. Balashov; V. Gubankov Magnetic properties of annular Josephson junctions for radiation detection: Experimental results, Appl. Phys. Lett., Volume 74 (1999), p. 3389

[31] R. Schulz; B. Chesca; B. Goetz; C. Schneider; A. Schmehl; H. Bielefeldt; H. Hilgenkamp; J. Mannhart; C. Tsuei Design and realization of an all d-wave dc π-superconducting quantum interference device, Appl. Phys. Lett., Volume 76 (2000), p. 912

[32] J.R. Kirtley; C.C. Tsuei Ariando; S. Harkema; H. Hilgenkamp Angle-resolved phase-sensitive determination of the in-plane symmetry in YBa2Cu3O7 − δ, Nature Phys., Volume 2 (2006) no. 5, pp. 190-194

[33] H. Hilgenkamp; J. Mannhart Grain boundaries in high-Tc superconductors, Rev. Mod. Phys., Volume 74 (2002) no. 2, pp. 485-549 | DOI

[34] H.-J.H. Smilde; H. Hilgenkamp; G. Rijnders; H. Rogalla; D.H.A. Blank Enhanced transparency ramp-type Josephson contacts through interlayer deposition, Appl. Phys. Lett., Volume 80 (2002) no. 24, pp. 4579-4581 http://link.aip.org/link/?APL/80/4579/1 | DOI

[35] J.M. Dekkers; G. Rijnders; S. Harkema; H.J.H. Smilde; H. Hilgenkamp; H. Rogalla; D.H.A. Blank Monocrystalline YBa2Cu3O7 − x thin films on vicinal SrTiO3 (001) substrates, Appl. Phys. Lett., Volume 83 (2003) no. 25, pp. 5199-5201 http://link.aip.org/link/?APL/83/5199/1 | DOI

[36] P.W. Anderson; J.M. Rowell Probable observation of the Josephson superconducting tunneling effect, Phys. Rev. Lett., Volume 10 (1963) no. 6, pp. 230-232 | DOI

[37] R.C. Jaklevic; J. Lambe; A.H. Silver; J.E. Mercereau Quantum interference effects in Josephson tunneling, Phys. Rev. Lett., Volume 12 (1964) no. 7, pp. 159-160 | DOI

[38] J.E. Zimmerman; J.E. Mercereau Quantized flux pinning in superconducting niobium, Phys. Rev. Lett., Volume 13 (1964) no. 4, pp. 125-126

[39] F.P. Rogers, A device for experimental observation of flux vortices trapped in superconducting thin films, Masterʼs thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[40] A. Mathai; D. Song; Y. Gim; F.C. Wellstood One-dimensional magnetic flux microscope based on the dc superconducting quantum interference device, Appl. Phys. Lett., Volume 61 (1992) no. 5, pp. 598-600 http://link.aip.org/link/?APL/61/598/1 | DOI

[41] R.C. Black; A. Mathai; F.C. Wellstood; E. Dantsker; A.H. Miklich; D.T. Nemeth; J.J. Kingston; J. Clarke Magnetic microscopy using a liquid nitrogen cooled YBa2Cu3O7 superconducting quantum interference device, Appl. Phys. Lett., Volume 62 (1993) no. 17, pp. 2128-2130 http://link.aip.org/link/?APL/62/2128/1 | DOI

[42] L.N. Vu; M.S. Wistrom; D.J. van Harlingen Imaging of magnetic vortices in superconducting networks and clusters by scanning SQUID microscopy, Appl. Phys. Lett., Volume 63 (1993) no. 12, pp. 1693-1695

[43] L. Vu; D. Van Harlingen Design and implementation of a scanning SQUID microscope, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1918-1921 | DOI

[44] Y. Ma; I. Thomas; A. Lauder; J.P. Wikswo A high resolution imaging susceptometer, IEEE Trans. Appl. Supercond., Volume 3 (1993) no. 1, pp. 1941-1944 | DOI

[45] J.R. Kirtley; M.B. Ketchen; K.G. Stawiasz; J.Z. Sun; W.J. Gallagher; S.H. Blanton; S.J. Wind High-resolution scanning SQUID microscope, Appl. Phys. Lett., Volume 66 (1995) no. 9, pp. 1138-1140 http://link.aip.org/link/?APL/66/1138/1 | DOI

[46] W. Wernsdorfer; E.B. Orozco; K. Hasselbach; A. Benoit; B. Barbara; N. Demoncy; A. Loiseau; H. Pascard; D. Mailly Experimental evidence of the Néel–Brown model of magnetization reversal, Phys. Rev. Lett., Volume 78 (1997) no. 9, pp. 1791-1794 | DOI

[47] C. Veauvy; K. Hasselbach; D. Mailly Scanning μ-superconduction quantum interference device force microscope, Rev. Sci. Instrum., Volume 73 (2002), p. 3825

[48] A.G.P. Troeman; H. Derking; B. Borger; J. Pleikies; D. Veldhuis; H. Hilgenkamp NanoSQUIDs based on niobium constrictions, Nano Lett., Volume 7 (2007) no. 7, pp. 2152-2156

[49] C. Granata; E. Esposito; A. Vettoliere; L. Petti; M. Russo An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications, Nanotechnology, Volume 19 (2008) no. 27, pp. 275501-275600

[50] L. Hao; J.C. Macfarlane; J.C. Gallop; D. Cox; J. Beyer; D. Drung; T. Schurig Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam, Appl. Phys. Lett., Volume 92 (2008), p. 192507

[51] A. Finkler; Y. Segev; Y. Myasoedov; M. Rappaport; L. Neʼeman; D. Vasyukov; E. Zeldov; M. Huber; J. Martin; A. Yacoby Self-aligned nanoscale SQUID on a tip, Nano Lett. (2010), p. 329

[52] M.B. Ketchen; J.R. Kirtley Design and performance aspects of pickup loop structures for miniature SQUID magnetometry, IEEE Trans. Appl. Supercond., Volume 5 (1995) no. 2, pp. 2133-2136

[53] M. Gurvitch; M.A. Washington; H.A. Huggins High quality refractory Josephson tunnel junctions utilizing thin aluminum layers, Appl. Phys. Lett., Volume 42 (1983) no. 5, pp. 472-474 http://link.aip.org/link/?APL/42/472/1 | DOI

[54] N.C. Koshnick; M.E. Huber; J.A. Bert; C.W. Hicks; J. Large; H. Edwards; K.A. Moler A terraced scanning superconducting quantum interference device susceptometer with sub-micron pickup loops, Appl. Phys. Lett., Volume 93 (2008), p. 243101

[55] B.W. Gardner; J.C. Wynn; P.G. Björnsson; E.W.J. Straver; K.A. Moler; J.R. Kirtley; M.B. Ketchen Scanning superconducting quantum interference device susceptometry, Rev. Sci. Instrum., Volume 72 (2001) no. 5, pp. 2361-2364 http://link.aip.org/link/?RSI/72/2361/1 | DOI

[56] M.E. Huber; N.C. Koshnick; H. Bluhm; L.J. Archuleta; T. Azua; P.G. Björnsson; B.W. Gardner; S.T. Halloran; E.A. Lucero; K.A. Moler Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples, Rev. Sci. Instrum., Volume 79 (2008) no. 5, p. 053704 http://link.aip.org/link/?RSI/79/053704/1 | DOI

[57] J. Kirtley; C. Tsuei; K. Moler; V. Kogan; J. Clem; A. Turberfield Variable sample temperature scanning superconducting quantum interference device microscope, Appl. Phys. Lett., Volume 74 (1999), p. 4011

[58] J.R. Kirtley; C.C. Tsuei; J.Z. Sun; C.C. Chi; L.S. Yu-Jahnes; A. Gupta; M. Rupp; M. Ketchen Symmetry of the order parameter in the high-Tc superconductor YBa2Cu3O7 − δ, Nature, Volume 373 (1995), p. 225

[59] J.R. Kirtley; C.C. Tsuei; M. Rupp; J.Z. Sun; L.S. Yu-Jahnes; A. Gupta; M.B. Ketchen; K.A. Moler; M. Bhushan Direct imaging of integer and half-integer Josephson vortices in high-Tc grain boundaries, Phys. Rev. Lett., Volume 76 (1996), p. 1336

[60] J.R. Kirtley; C.C. Tsuei; H. Raffy; Z.Z. Li; A. Gupta; J.Z. Sun; S. Megert Half-integer flux quantum effect in tricrystal Bi2Sr2CaCu2O8 + δ, Europhys. Lett., Volume 36 (1996), p. 707

[61] C.C. Tsuei; J.R. Kirtley; M. Rupp; J.Z. Sun; A. Gupta; M.B. Ketchen; C.A. Wang; Z.F. Ren; J.H. Wang; M. Bhushan Half-integer flux quantum effect and pairing symmetry in high-Tc tetragonal Tl2Ba2CuO6 + δ films, Science, Volume 272 (1996), p. 329

[62] C.C. Tsuei; J.R. Kirtley; G. Hammerl; J. Mannhart; H. Raffy; Z.Z. Li Robust dx2y2 pairing symmetry in hole-doped cuprate superconductors, Phys. Rev. Lett., Volume 93 (2004) no. 18, p. 187004 | DOI

[63] C.C. Tsuei; J.R. Kirtley Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors, Phys. Rev. Lett., Volume 85 (2000) no. 1, pp. 182-185 | DOI

[64] A. Mathai; Y. Gim; R.C. Black; A. Amar; F.C. Wellstood Experimental proof of a time-reversal-invariant order parameter with a π shift in YBa2Cu3O7 − δ, Phys. Rev. Lett., Volume 74 (1995) no. 22, pp. 4523-4526 | DOI

[65] A. Sugimoto; T. Yamaguchi; I. Iguchi Temperature dependence of half flux quantum in YBa2Cu3O7 − y tricrystal thin film observed by scanning SQUID microscopy, Phys. C Supercond., Volume 367 (2002) no. 1–4, pp. 28-32 http://www.sciencedirect.com/science/article/B6TVJ-44T8FBX-6/2/b4ca9c697502d1ec315eb2e63743849d | DOI

[66] K. Cedergren; J.R. Kirtley; J. Bauch; G. Rotoli; A. Troeman; H. Hilgenkamp; F. Tafuri; F. Lombardi Interplay between static and dynamic properties of semifluxons in YBa2Cu3O7 − δ 0–π Josephson junctions, Phys. Rev. Lett., Volume 104 (2010), p. 177003

[67] J.R. Kirtley; C.C. Tsuei; K.A. Moler Temperature dependence of the half-integer magnetic flux quantum, Science, Volume 285 (1999), p. 1373

[68] M. Sigrist; D. Bailey; R. Laughlin Fractional vortices as evidence of time-reversal symmetry breaking in high-temperature superconductors, Phys. Rev. Lett., Volume 74 (1995) no. 16, pp. 3249-3252

[69] M. Sigrist Time-reversal symmetry breaking states in high-temperature superconductors, Progr. Theoret. Phys., Volume 99 (1998) no. 6, pp. 899-929

[70] M. Covington; M. Aprili; E. Paraoanu; L. Greene; F. Xu; J. Zhu; C. Mirkin Observation of surface-induced broken time-reversal symmetry in YBa2Cu3O7 tunnel junctions, Phys. Rev. Lett., Volume 79 (1997), pp. 277-280

[71] Y. Gim; A. Mathai; R. Black; A. Amar; F. Wellstood Angular dependence of the symmetry of the order parameter in YBa2Cu3O7 − δ, IEEE Trans. Appl. Supercond., Volume 7 (1997) no. 2, pp. 2331-2334

[72] D. van Harlingen; J. Hilliard; B. Plourde; B. Yanoff Extending SQUID interferometry beyond the cuprates and beyond d-wave symmetry, Phys. C Supercond., Volume 317 (1999), pp. 410-420

[73] F. Lombardi; F. Tafuri; F. Ricci; F.M. Granozio; A. Barone; G. Testa; E. Sarnelli; J.R. Kirtley; C.C. Tsuei Intrinsic d-wave effects in YBa2Cu3O7 − δ grain boundary Josephson junctions, Phys. Rev. Lett., Volume 89 (2002) no. 20, p. 207001 | DOI

[74] H.J.H. Smilde; A.A. Golubov; Ariando; G. Rijnders; J.M. Dekkers; S. Harkema; D.H.A. Blank; H. Rogalla; H. Hilgenkamp Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling, Phys. Rev. Lett., Volume 95 (2005) no. 25, p. 257001 | DOI

[75] A. Sun; D. Gajewski; M. Maple; R. Dynes Observation of Josephson pair tunneling between a high-Tc cuprate (YBa2Cu3O7 − δ) and a conventional superconductor (Pb), Phys. Rev. Lett., Volume 72 (1994) no. 14, pp. 2267-2270

[76] M. Walker Orthorhombically mixed s- and dx2y2-wave superconductivity and Josephson tunneling, Phys. Rev. B, Volume 53 (1996), pp. 5835-5838

[77] R. Kleiner; A. Katz; A. Sun; R. Summer; D. Gajewski; S. Han; S. Woods; E. Dantsker; B. Chen; K. Char et al. Pair tunneling from c-axis YBa2Cu3O7 − x to Pb: evidence for s-wave component from microwave induced steps, Phys. Rev. Lett., Volume 76 (1996) no. 12, pp. 2161-2164

[78] K. Nelson; Z. Mao; Y. Maeno; Y. Liu Odd-parity superconductivity in Sr2RuO4, Science, Volume 306 (2004) no. 5699, p. 1151

[79] F. Kidwingira; J. Strand; D. Van Harlingen; Y. Maeno Dynamical superconducting order parameter domains in Sr2RuO4, Science, Volume 314 (2006) no. 5803, p. 1267

[80] J.D. Strand; D.J. Van Harlingen; J.B. Kycia; W.P. Halperin Evidence for complex superconducting order parameter symmetry in the low-temperature phase of UPt3 from Josephson interferometry, Phys. Rev. Lett., Volume 103 (2009) no. 19, p. 197002 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Superconductivity and macroscopic quantum effects in superconducting/ferromagnetic hybrid nanostructures

Marco Aprili; Takis Kontos; Maria-Luisa Della Rocca; ...

C. R. Phys (2006)


Interface enhanced superconductivity in FeSe/SrTiO 3 and the hidden nature

Sha Han; Can-Li Song; Xu-Cun Ma; ...

C. R. Phys (2021)


The ruthenocuprates: natural superconductor–ferromagnet multilayers

Timo Nachtrab; Christian Bernhard; Chengtian Lin; ...

C. R. Phys (2006)