Comptes Rendus
Open questions in GRB physics
[Questions ouvertes de la physique des sursauts gamma]
Comptes Rendus. Physique, Volume 12 (2011) no. 3, pp. 206-225.

Cette contribution résume les questions ouvertes de la physique des sursauts gamma, début 2011. La classification, les progéniteurs, le moteur central, la composition de lʼéjecta, la dissipation dʼénergie et les mécanismes dʼaccélération de particules, les processus de rayonnement, lʼactivité prolongée du moteur central, la physique du choc externe lors des rémanences, lʼorigine de lʼémission haute énergie et le contexte cosmologique sont successivement évoqués. Lʼapport attendu de la mission franco-chinoise SVOM à la résolution de certaines de ces questions est ensuite expliqué.

Open questions in GRB physics are summarized as of 2011, including classification, progenitor, central engine, ejecta composition, energy dissipation and particle acceleration mechanism, radiation mechanism, long term engine activity, external shock afterglow physics, origin of high energy emission, and cosmological setting. Prospects of addressing some of these problems with the upcoming Chinese–French GRB mission, SVOM, are outlined.

Publié le :
DOI : 10.1016/j.crhy.2011.03.004
Keywords: Gamma-rays, Stars, Black holes, Neutron stars, Shocks, Magnetic fields, Radiation mechanism
Mot clés : Sursauts gamma, Étoiles, Trous noirs, Étoiles à neutrons, Chocs, Champs magnétiques, Processus de rayonnement

Bing Zhang 1

1 Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
@article{CRPHYS_2011__12_3_206_0,
     author = {Bing Zhang},
     title = {Open questions in {GRB} physics},
     journal = {Comptes Rendus. Physique},
     pages = {206--225},
     publisher = {Elsevier},
     volume = {12},
     number = {3},
     year = {2011},
     doi = {10.1016/j.crhy.2011.03.004},
     language = {en},
}
TY  - JOUR
AU  - Bing Zhang
TI  - Open questions in GRB physics
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 206
EP  - 225
VL  - 12
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.03.004
LA  - en
ID  - CRPHYS_2011__12_3_206_0
ER  - 
%0 Journal Article
%A Bing Zhang
%T Open questions in GRB physics
%J Comptes Rendus. Physique
%D 2011
%P 206-225
%V 12
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.03.004
%G en
%F CRPHYS_2011__12_3_206_0
Bing Zhang. Open questions in GRB physics. Comptes Rendus. Physique, Volume 12 (2011) no. 3, pp. 206-225. doi : 10.1016/j.crhy.2011.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.004/

[1] P. Mészáros Gamma-ray bursts, Rep. Prog. Phys., Volume 69 (2006), pp. 2259-2322

[2] B. Zhang Gamma-ray bursts in the Swift era, Chinese J. Astron. Astrophys., Volume 7 (2007), pp. 1-50

[3] N. Gehrels; E. Ramirez-Ruiz; D.B. Fox Gamma-ray bursts in the Swift era, Annu. Rev. Astron. Astrophys., Volume 47 (2009), pp. 567-617

[4] P.F. Michelson; W.B. Atwood; S. Ritz Fermi gamma-ray space telescope: high-energy results from the first year, Rep. Prog. Phys., Volume 73 (2010) no. 7, p. 074901

[5] J. Paul; J. Wei; S. Basa; S.N. Zhang The Chinese–French SVOM mission for gamma-ray burst studies, C. R. Physique, Volume 12 (2011), pp. 298-308 (this issue)

[6] J. Greiner; A. Rau; J. Greiner; A. Rau Fermi gamma-ray space telescope: high-energy results from the first year, Rep. Prog. Phys., Volume 12 (2011) no. 7, pp. 226-233 (this issue)

[7] C. Kouveliotou et al. Identification of two classes of gamma-ray bursts, Astrophys. J., Volume 413 (1993), p. L101-L104

[8] T. Sakamoto, et al., The second Swift BAT gamma-ray burst catalog, Astrophys. J. (2011), submitted for publication.

[9] J.P. Norris; J.T. Bonnell Short gamma-ray bursts with extended emission, Astrophys. J., Volume 643 (2006), pp. 266-275

[10] I. Horváth et al. Detailed classification of Swiftʼs gamma-ray bursts, Astrophys. J., Volume 713 (2010), pp. 552-557

[11] T.J. Galama et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998, Nature, Volume 395 (1998), pp. 670-672

[12] J. Hjorth et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003, Nature, Volume 423 (2003), pp. 847-850

[13] K.Z. Stanek et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329, Astrophys. J., Volume 591 (2003), p. L17-L20

[14] S. Campana et al. The association of GRB 060218 with a supernova and the evolution of the shock wave, Nature, Volume 442 (2006), pp. 1008-1010

[15] E. Pian et al. An optical supernova associated with the X-ray flash XRF 060218, Nature, Volume 442 (2006), pp. 1011-1013

[16] A.S. Fruchter et al. Long γ-ray bursts and core-collapse supernovae have different environments, Nature, Volume 441 (2006), pp. 463-468

[17] S.E. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., Volume 405 (1993), pp. 273-277

[18] B. Paczýnski Are gamma-ray bursts in star-forming regions?, Astrophys. J., Volume 494 (1998), p. L45-L48

[19] N. Gehrels et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z=0.225, Nature, Volume 437 (2005), pp. 851-854

[20] D.B. Fox et al. The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts, Nature, Volume 437 (2005), pp. 845-850

[21] S.D. Barthelmy et al. An origin for short γ-ray bursts unassociated with current star formation, Nature, Volume 438 (2005), pp. 994-996

[22] E. Berger et al. Afterglows, redshifts, and properties of Swift gamma-ray bursts, Astrophys. J., Volume 634 (2005), pp. 501-508

[23] B. Paczýnski Gamma-ray bursters at cosmological distances, Astrophys. J., Volume 308 (1986), p. L43-L46

[24] D. Eichler et al. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars, Nature, Volume 340 (1989), pp. 126-128

[25] R. Narayan; B. Paczynski; T. Piran Gamma-ray bursts as the death throes of massive binary stars, Astrophys. J., Volume 395 (1992), p. L83-L86

[26] N. Gehrels et al. A new γ-ray burst classification scheme from GRB060614, Nature, Volume 444 (2006), pp. 1044-1046

[27] A. Gal-Yam et al. A novel explosive process is required for the γ-ray burst GRB 060614, Nature, Volume 444 (2006), pp. 1053-1055

[28] J.P.U. Fynbo et al. No supernovae associated with two long-duration γ-ray bursts, Nature, Volume 444 (2006), pp. 1047-1049

[29] M. Della Valle et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova, Nature, Volume 444 (2006), pp. 1050-1052

[30] B. Zhang et al. Making a short gamma-ray burst from a long one: Implications for the nature of GRB 060614, Astrophys. J., Volume 655 (2007), p. L25-L28

[31] B. Zhang et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: The cases of z=6.7 GRB 080913, z=8.2 GRB 090423, and some short/hard GRBs, Astrophys. J., Volume 703 (2009), pp. 1696-1724

[32] N.R. Tanvir et al. A γ-ray burst at a redshift of z8.2, Nature, Volume 461 (2009), pp. 1254-1257

[33] R. Salvaterra et al. GRB090423 at a redshift of z8.1, Nature, Volume 461 (2009), pp. 1258-1260

[34] J. Greiner et al. GRB 080913 at redshift 6.7, Astrophys. J., Volume 693 (2009), pp. 1610-1620

[35] E.M. Levesque et al. GRB090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609, Month. Not. Roy. Astron. Soc., Volume 401 (2010), pp. 963-972

[36] L.A. Antonelli et al. GRB 090426: the farthest short gamma-ray burst?, Astron. Astrophys., Volume 507 (2009), p. L45-L48

[37] L.-P. Xin et al. Probing the nature of high-z short GRB 090426 with its early optical and X-ray afterglows, Month. Not. Roy. Astron. Soc., Volume 410 (2011), pp. 27-32

[38] J.S. Bloom; N.R. Butler; D.A. Perley Gamma-ray bursts, classified physically (M. Galassi; D. Palmer; E. Fenimore, eds.), American Institute of Physics Conference Series, vol. 1000, 2008, pp. 11-15

[39] T.Q. Donaghy et al. HETE-2 localizations and observations of four short gamma-ray bursts: GRBs 010326B, 040802, 051211 and 060121, 2006 | arXiv

[40] D.A. Kann et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows, Astrophys. J., Volume 720 (2010), pp. 1513-1558

[41] D.A. Kann, et al., The afterglows of Swift-era gamma-ray bursts. II. Short/hard (type I) vs. long/soft (type II) optical afterglows, Astrophys. J. (2011), in press, . | arXiv

[42] H.-J. Lü; E.-W. Liang; B.-B. Zhang; B. Zhang A new classification method for gamma-ray bursts, Astrophys. J., Volume 725 (2010), pp. 1965-1970

[43] R.L.C. Starling et al. Discovery of the nearby long, soft GRB 100316D with an associated supernova, Month. Not. Roy. Astron. Soc., Volume 411 (2011), pp. 2792-2803 | arXiv | DOI

[44] S. Savaglio; K. Glazebrook; D. Le Borgne The galaxy population hosting gamma-ray bursts, Astrophys. J., Volume 691 (2009), pp. 182-211

[45] S.E. Woosley; A. Heger The progenitor stars of gamma-ray bursts, Astrophys. J., Volume 637 (2006), pp. 914-921

[46] C.L. Fryer; S.E. Woosley; D.H. Hartmann Formation rates of black hole accretion disk gamma-ray bursts, Astrophys. J., Volume 526 (1999), pp. 152-177

[47] S.-C. Yoon; N. Langer Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts, Astron. Astrophys., Volume 443 (2005), pp. 643-648

[48] M. Vietri; L. Stella A gamma-ray burst model with small baryon contamination, Astrophys. J., Volume 507 (1998), p. L45-L48

[49] A.M. Soderberg et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions, Nature, Volume 442 (2006), pp. 1014-1017

[50] P.A. Mazzali et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj, Nature, Volume 442 (2006), pp. 1018-1020

[51] E. Liang et al. Low-luminosity gamma-ray bursts as a unique population: Luminosity function, local rate, and beaming factor, Astrophys. J., Volume 662 (2007), pp. 1111-1118

[52] S.T. Holland et al. GRB 090417B and its host galaxy: A step toward an understanding of optically dark gamma-ray bursts, Astrophys. J., Volume 717 (2010), pp. 223-234

[53] C. Wolf; P. Podsiadlowski The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities, Month. Not. Roy. Astron. Soc., Volume 375 (2007), pp. 1049-1058

[54] L.-X. Li Star formation history up to z=7.4: implications for gamma-ray bursts and cosmic metallicity evolution, Month. Not. Roy. Astron. Soc., Volume 388 (2008), pp. 1487-1500

[55] Y. Niino et al. Luminosity distribution of gamma-ray burst host galaxies at redshift z=1 in cosmological smoothed particle hydrodynamic simulations: Implications for the metallicity dependence of GRBs, Astrophys. J., Volume 726 (2011), p. 88

[56] J.S. Bloom et al. Closing in on a short-hard burst progenitor: Constraints from early-time optical imaging and spectroscopy of a possible host galaxy of GRB 050509b, Astrophys. J., Volume 638 (2006), pp. 354-368

[57] W. Fong; E. Berger; D.B. Fox Hubble space telescope observations of short gamma-ray burst host galaxies: Morphologies, offsets, and local environments, Astrophys. J., Volume 708 (2010), pp. 9-25

[58] J. Hjorth et al. The optical afterglow of the short γ-ray burst GRB 050709, Nature, Volume 437 (2005), pp. 859-861

[59] S. Rosswog; E. Ramirez-Ruiz; M.B. Davies High-resolution calculations of merging neutron stars – III. Gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 345 (2003), pp. 1077-1090

[60] M.A. Aloy; H.-T. Janka; E. Müller Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts, Astron. Astrophys., Volume 436 (2005), pp. 273-311

[61] L. Rezzolla et al. The missing link: merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts | arXiv

[62] B. Paczýnski Cosmological gamma-ray bursts, Acta Astron., Volume 41 (1991), pp. 257-267

[63] J.H. Taylor; J.M. Weisberg Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16, Astrophys. J., Volume 345 (1989), pp. 434-450

[64] M. Kramer; I.H. Stairs The double pulsar, Annu. Rev. Astron. Astrophys., Volume 46 (2008), pp. 541-572

[65] E. Nakar Short-hard gamma-ray bursts, Phys. Rep., Volume 442 (2007), pp. 166-236

[66] W.H. Lee; E. Ramirez-Ruiz The progenitors of short gamma-ray bursts, New J. Phys., Volume 9 (2007), p. 17

[67] E. Berger et al. A new population of high-redshift short-duration gamma-ray bursts, Astrophys. J., Volume 664 (2007), pp. 1000-1010

[68] A. de Ugarte Postigo et al. GRB 060121: Implications of a short-/intermediate-duration γ-ray burst at high redshift, Astrophys. J., Volume 648 (2006), p. L83-L87

[69] F.J. Virgili; B. Zhang; P. OʼBrien; E. Troja Are all short-hard gamma-ray bursts produced from mergers of compact stellar objects?, Astrophys. J., Volume 727 (2011), p. 109

[70] E. Nakar; A. Gal-Yam; D.B. Fox The local rate and the progenitor lifetimes of short-hard gamma-ray bursts: Synthesis and predictions for the laser interferometer gravitational-wave observatory, Astrophys. J., Volume 650 (2006), pp. 281-290

[71] D. Guetta; T. Piran The BATSE-Swift luminosity and redshift distributions of short-duration GRBs, Astron. Astrophys., Volume 453 (2006), pp. 823-828

[72] W.H. Lee; E. Ramirez-Ruiz; G. van de Ven Short gamma-ray bursts from dynamically assembled compact binaries in globular clusters: Pathways, rates, hydrodynamics, and cosmological setting, Astrophys. J., Volume 720 (2010), pp. 953-975

[73] S. Rosswog, invited talk at “Prompt GRB 2011”, Raleigh.

[74] C. Cutler; K.S. Thorne An overview of gravitational-wave sources, 2002 | arXiv

[75] C.D. Dermer; A. Atoyan Collapse of neutron stars to black holes in binary systems: A model for short gamma-ray bursts, Astrophys. J., Volume 643 (2006), p. L13-L16

[76] D.M. Palmer et al. A giant γ-ray flare from the magnetar SGR 1806-20, Nature, Volume 434 (2005), pp. 1107-1109

[77] K. Hurley et al. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts, Nature, Volume 434 (2005), pp. 1098-1103

[78] N.R. Tanvir et al. An origin in the local universe for some short γ-ray bursts, Nature, Volume 438 (2005), pp. 991-993

[79] E. Nakar et al. The distances of short-hard gamma-ray bursts and the soft gamma-ray repeater connection, Astrophys. J., Volume 640 (2006), pp. 849-853

[80] G.J. Fishman; C.A. Meegan Gamma-ray bursts, Annu. Rev. Astron. Astrophys., Volume 33 (1995), pp. 415-458

[81] B. Zhang; P. Mészáros Gamma-ray bursts progress, problems & prospects, Internat. J. Modern Phys. A, Volume 19 (2004), pp. 2385-2472

[82] T. Piran Gamma-ray bursts and the fireball model, Phys. Rep., Volume 314 (1999), pp. 575-667

[83] Y. Lithwick; R. Sari Lower limits on Lorentz factors in gamma-ray bursts, Astrophys. J., Volume 555 (2001), pp. 540-545

[84] E.-W. Liang et al. Constraining GRB initial Lorentz factor with the afterglow onset feature and discovery of a tight Γ0Eiso correlation, Astrophys. J., Volume 725 (2010), pp. 2209-2224

[85] A.A. Abdo et al. Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science, Volume 323 (2009), pp. 1688-1693

[86] A.A. Abdo et al. A limit on the variation of the speed of light arising from quantum gravity effects, Nature, Volume 462 (2009), pp. 331-334

[87] A.A. Abdo et al. Fermi observations of GRB 090902B: A distinct spectral component in the prompt and delayed emission, Astrophys. J., Volume 706 (2009), p. L138-L144

[88] D.A. Frail et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir, Astrophys. J., Volume 562 (2001), p. L55-L58

[89] J.S. Bloom; D.A. Frail; S.R. Kulkarni Gamma-ray burst energetics and the gamma-ray burst Hubble diagram: Promises and limitations, Astrophys. J., Volume 594 (2003), pp. 674-683

[90] E.-W. Liang et al. A comprehensive analysis of Swift XRT data. III. Jet break candidates in X-ray and optical afterglow light curves, Astrophys. J., Volume 675 (2008), pp. 528-552

[91] J.L. Racusin et al. Jet breaks and energetics of Swift GRB X-ray afterglows, Astrophys. J., Volume 698 (2009), pp. 43-74

[92] A.M. Beloborodov; B.E. Stern; R. Svensson Self-similar temporal behavior of gamma-ray bursts, Astrophys. J., Volume 508 (1998), p. L25-L27

[93] J.P. Norris Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms, Astrophys. J., Volume 579 (2002), pp. 386-403

[94] A.I. MacFadyen; S.E. Woosley Collapsars: Gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J., Volume 524 (1999), pp. 262-289

[95] D. Proga et al. Axisymmetric magnetohydrodynamic simulations of the collapsar model for gamma-ray bursts, Astrophys. J., Volume 599 (2003), p. L5-L8

[96] W. Zhang; S.E. Woosley; A.I. MacFadyen Relativistic jets in collapsars, Astrophys. J., Volume 586 (2003), pp. 356-371

[97] B.J. Morsony; D. Lazzati; M.C. Begelman The origin and propagation of variability in the outflows of long-duration gamma-ray bursts, Astrophys. J., Volume 723 (2010), pp. 267-276

[98] R.D. Blandford; R.L. Znajek Electromagnetic extraction of energy from Kerr black holes, Month. Not. Roy. Astron. Soc., Volume 179 (1977), pp. 433-456

[99] P. Mészáros; M.J. Rees Poynting jets from black holes and cosmological gamma-ray bursts, Astrophys. J., Volume 482 (1997), p. L29-L32

[100] H.K. Lee; R.A.M.J. Wijers; G.E. Brown The Blandford–Znajek process as a central engine for a gamma-ray burst, Phys. Rep., Volume 325 (2000), pp. 83-114

[101] L.-X. Li Extracting energy from a black hole through its disk, Astrophys. J., Volume 533 (2000), p. L115-L118

[102] J.C. McKinney Total and jet Blandford–Znajek power in the presence of an accretion disk, Astrophys. J., Volume 630 (2005), p. L5-L8

[103] D. Proga; M.C. Begelman Accretion of low angular momentum material onto black holes: Two-dimensional magnetohydrodynamic case, Astrophys. J., Volume 592 (2003), pp. 767-781

[104] W.H. Lei et al. Magnetically torqued neutrino-dominated accretion flows for gamma-ray bursts, Astrophys. J., Volume 700 (2009), pp. 1970-1976

[105] V.V. Usov Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts, Nature, Volume 357 (1992), pp. 472-474

[106] D. Zhang; Z.G. Dai Hyperaccreting neutron star disks and neutrino annihilation, Astrophys. J., Volume 703 (2009), pp. 461-478

[107] H.-T. Janka; E. Mueller The first second of a type II supernova: Convection, accretion, and shock propagation, Astrophys. J., Volume 448 (1995), p. L109-L113

[108] Y.-Z. Qian; S.E. Woosley Nucleosynthesis in neutrino-driven winds. I. The physical condition, Astrophys. J., Volume 471 (1996), pp. 331-351

[109] T.A. Thompson; P. Chang; E. Quataert Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts, Astrophys. J., Volume 611 (2004), pp. 380-393

[110] B.D. Metzger; T.A. Thompson; E. Quataert Proto-neutron star winds with magnetic fields and rotation, Astrophys. J., Volume 659 (2007), pp. 561-579

[111] B.D. Metzger, et al., The proto-magnetar model for gamma-ray bursts, Month. Not. Roy. Astron. Soc., submitted for publication, . | arXiv

[112] J.C. Wheeler et al. Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts, Astrophys. J., Volume 537 (2000), pp. 810-823

[113] M. Lyutikov; R. Blandford Gamma ray bursts as electromagnetic outflows, 2003 | arXiv

[114] E. Witten Cosmic separation of phases, Phys. Rev. D, Volume 30 (1984), pp. 272-285

[115] C. Alcock; E. Farhi; A. Olinto Strange stars, Astrophys. J., Volume 310 (1986), pp. 261-272

[116] K.S. Cheng; Z.G. Dai Conversion of neutron stars to strange stars as a possible origin of γ-ray bursts, Phys. Rev. Lett., Volume 77 (1996), pp. 1210-1213

[117] Z.G. Dai; T. Lu γ-Ray bursts and afterglows from rotating strange stars and neutron stars, Phys. Rev. Lett., Volume 81 (1998), pp. 4301-4304

[118] R. Ouyed; R. Rapp; C. Vogt Fireballs from quark stars in the color-flavor locked phase: Application to gamma-ray bursts, Astrophys. J., Volume 632 (2005), pp. 1001-1007

[119] B. Paczyński; P. Haensel Gamma-ray bursts from quark stars, Month. Not. Roy. Astron. Soc., Volume 362 (2005), p. L4-L7

[120] R. Xu; E. Liang X-ray flares of γ-ray bursts: Quakes of solid quark stars?, Sci. China G: Phys. Astron., Volume 52 (2009), pp. 315-320

[121] K. Iwamoto et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998, Nature, Volume 395 (1998), pp. 672-674

[122] P.A. Mazzali et al. The type Ic hypernova SN 2003dh/GRB 030329, Astrophys. J., Volume 599 (2003), p. L95-L98

[123] Z.G. Dai; T. Lu Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars, Astron. Astrophys., Volume 333 (1998), p. L87-L90

[124] B. Zhang; P. Mészáros Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar, Astrophys. J., Volume 552 (2001), p. L35-L38

[125] B. Zhang et al. Physical processes shaping gamma-ray burst X-ray afterglow light curves: Theoretical implications from the Swift X-ray telescope observations, Astrophys. J., Volume 642 (2006), pp. 354-370

[126] J.A. Nousek et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data, Astrophys. J., Volume 642 (2006), pp. 389-400

[127] P.T. OʼBrien et al. The early X-ray emission from GRBs, Astrophys. J., Volume 647 (2006), pp. 1213-1237

[128] E. Troja et al. Swift observations of GRB 070110: An extraordinary X-ray afterglow powered by the central engine, Astrophys. J., Volume 665 (2007), pp. 599-607

[129] E.-W. Liang; B.-B. Zhang; B. Zhang A comprehensive analysis of Swift XRT data. II. Diverse physical origins of the shallow decay segment, Astrophys. J., Volume 670 (2007), pp. 565-583

[130] N. Lyons et al. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features?, Month. Not. Roy. Astron. Soc., Volume 402 (2010), pp. 705-712

[131] J. Novak Numerical simulations of GRB engines, C. R. Physique, Volume 12 (2011), pp. 246-254 (this issue)

[132] E.V. Derishev; V.V. Kocharovsky; V.V. Kocharovsky The neutron component in fireballs of gamma-ray bursts: Dynamics and observable imprints, Astrophys. J., Volume 521 (1999), pp. 640-649

[133] A.M. Beloborodov Nuclear composition of gamma-ray burst fireballs, Astrophys. J., Volume 588 (2003), pp. 931-944

[134] A.M. Beloborodov Neutron-fed afterglows of gamma-ray bursts, Astrophys. J., Volume 585 (2003), p. L19-L22

[135] Y.Z. Fan; B. Zhang; D.M. Wei Early optical afterglow light curves of neutron-fed gamma-ray bursts, Astrophys. J., Volume 628 (2005), pp. 298-314

[136] J. Goodman Are gamma-ray bursts optically thick?, Astrophys. J., Volume 308 (1986), p. L47-L50

[137] A. Shemi; T. Piran The appearance of cosmic fireballs, Astrophys. J., Volume 365 (1990), p. L55-L58

[138] M.J. Rees; P. Mészáros Relativistic fireballs – Energy conversion and time-scales, Month. Not. Roy. Astron. Soc., Volume 258 (1992), p. 41P-43P

[139] P. Mészáros; M.J. Rees Relativistic fireballs and their impact on external matter – Models for cosmological gamma-ray bursts, Astrophys. J., Volume 405 (1993), pp. 278-284

[140] M.J. Rees; P. Mészáros Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J., Volume 430 (1994), p. L93-L96

[141] G. Drenkhahn; H.C. Spruit Efficient acceleration and radiation in Poynting flux powered GRB outflows, Astron. Astrophys., Volume 391 (2002), pp. 1141-1153

[142] N. Vlahakis; A. Königl Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. I. Theory and semianalytic trans-Alfvénic solutions, Astrophys. J., Volume 596 (2003), pp. 1080-1103

[143] S.S. Komissarov et al. Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources, Month. Not. Roy. Astron. Soc., Volume 394 (2009), pp. 1182-1212

[144] A. Tchekhovskoy; J.C. McKinney; R. Narayan Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere, Astrophys. J., Volume 699 (2009), pp. 1789-1808

[145] B. Zhang; H. Yan The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J., Volume 726 (2011), p. 90

[146] E. Waxman Astronomy: New direction for γ-rays, Nature, Volume 423 (2003), pp. 388-389

[147] M. Lyutikov; V.I. Pariev; R.D. Blandford Polarization of prompt gamma-ray burst emission: Evidence for electromagnetically dominated outflow, Astrophys. J., Volume 597 (2003), pp. 998-1009

[148] J. Granot The most probable cause for the high gamma-ray polarization in GRB 021206, Astrophys. J., Volume 596 (2003), p. L17-L21

[149] K. Toma et al. Statistical properties of gamma-ray burst polarization, Astrophys. J., Volume 698 (2009), pp. 1042-1053

[150] W. Coburn; S.E. Boggs Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002, Nature, Volume 423 (2003), pp. 415-417

[151] D.R. Willis et al. Evidence of polarisation in the prompt gamma-ray emission from GRB 930131 and GRB 960924, Astron. Astrophys., Volume 439 (2005), pp. 245-253

[152] R.E. Rutledge; D.B. Fox Re-analysis of polarization in the γ-ray flux of GRB 021206, Month. Not. Roy. Astron. Soc., Volume 350 (2004), pp. 1288-1300

[153] B. Zhang; A. Peʼer Evidence of an initially magnetically dominated outflow in GRB 080916C, Astrophys. J., Volume 700 (2009), p. L65-L68

[154] Y.-Z. Fan The spectrum of γ-ray burst: a clue, Month. Not. Roy. Astron. Soc., Volume 403 (2010), pp. 483-490

[155] B.-B. Zhang et al. A comprehensive analysis of Fermi gamma-ray burst data. I. Spectral components and their possible physical origins of LAT/GBM GRBs, Astrophys. J., Volume 730 (2011), p. 141 | arXiv | DOI

[156] A.M. Beloborodov Collisional mechanism for gamma-ray burst emission, Month. Not. Roy. Astron. Soc., Volume 407 (2010), pp. 1033-1047

[157] D. Lazzati; M.C. Begelman Non-thermal emission from the photospheres of gamma-ray burst outflows. I: High frequency tails, Astrophys. J., Volume 725 (2010), pp. 1137-1145

[158] M. Ackermann et al. Fermi observations of GRB 090510: A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies, Astrophys. J., Volume 716 (2010), pp. 1178-1190

[159] F. Ryde et al. Identification and properties of the photospheric emission in GRB090902B, Astrophys. J., Volume 709 (2010), p. L172-L177

[160] A. Peʼer, et al., The connection between thermal and non-thermal emission in gamma-ray bursts: General considerations and GRB090902B as a case study, Astrophys. J. (2010), submitted for publication, . | arXiv

[161] Y.Z. Fan; D.M. Wei; C.F. Wang The very early afterglow powered by ultra-relativistic mildly magnetized outflows, Astron. Astrophys., Volume 424 (2004), pp. 477-484

[162] B. Zhang; S. Kobayashi Gamma-ray burst early afterglows reverse shock emission from an arbitrarily magnetized ejecta, Astrophys. J., Volume 628 (2005), pp. 315-334

[163] P. Mimica; D. Giannios; M.A. Aloy Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution, Astron. Astrophys., Volume 494 (2009), pp. 879-890

[164] Y. Mizuno et al. Magnetohydrodynamic effects in propagating relativistic jets: Reverse shock and magnetic acceleration, Astrophys. J., Volume 690 (2009), p. L47-L51

[165] Y.-Z. Fan et al. Optical flash of GRB 990123: Constraints on the physical parameters of the reverse shock, Chinese J. Astron. Astrophys., Volume 2 (2002), pp. 449-453

[166] B. Zhang; S. Kobayashi; P. Mészáros Gamma-ray burst early optical afterglows: Implications for the initial Lorentz factor and the central engine, Astrophys. J., Volume 595 (2003), pp. 950-954

[167] P. Kumar; A. Panaitescu A unified treatment of the gamma-ray burst 021211 and its afterglow, Month. Not. Roy. Astron. Soc., Volume 346 (2003), pp. 905-914

[168] A. Gomboc et al. Multiwavelength analysis of the intriguing GRB 061126: The reverse shock scenario and magnetization, Astrophys. J., Volume 687 (2008), pp. 443-455

[169] I.A. Steele et al. Ten per cent polarized optical emission from GRB 090102, Nature, Volume 462 (2009), pp. 767-769

[170] J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation, Month. Not. Roy. Astron. Soc., submitted for publication, . | arXiv

[171] G. Tagliaferri et al. An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts, Nature, Volume 436 (2005), pp. 985-988

[172] S.D. Barthelmy et al. Discovery of an afterglow extension of the prompt phase of two gamma-ray bursts observed by Swift, Astrophys. J., Volume 635 (2005), p. L133-L136

[173] B.-B. Zhang; E.-W. Liang; B. Zhang A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails, Astrophys. J., Volume 666 (2007), pp. 1002-1011

[174] P. Kumar; A. Panaitescu Afterglow emission from naked gamma-ray bursts, Astrophys. J., Volume 541 (2000), p. L51-L54

[175] E.W. Liang et al. Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-ray flares with Swift data, Astrophys. J., Volume 646 (2006), pp. 351-357

[176] B.-B. Zhang et al. Curvature effect of a non-power spectrum and spectral evolution of GRB X-ray tails, Astrophys. J., Volume 690 (2009), p. L10-L13

[177] M. Lyutikov Did Swift measure gamma-ray burst prompt emission radii?, Month. Not. Roy. Astron. Soc., Volume 369 (2006), p. L5-L8

[178] P. Kumar et al. A unified picture for gamma-ray burst prompt and X-ray afterglow emissions, Month. Not. Roy. Astron. Soc., Volume 367 (2006), p. L52-L56

[179] W.T. Vestrand et al. A link between prompt optical and prompt γ-ray emission in γ-ray bursts, Nature, Volume 435 (2005), pp. 178-180

[180] J.L. Racusin et al. Broadband observations of the naked-eye γ-ray burst GRB080319B, Nature, Volume 455 (2008), pp. 183-188

[181] P. Kumar; A. Panaitescu What did we learn from gamma-ray burst 080319B?, Month. Not. Roy. Astron. Soc., Volume 391 (2008), p. L19-L23

[182] R.-F. Shen; B. Zhang Prompt optical emission and synchrotron self-absorption constraints on emission site of GRBs, Month. Not. Roy. Astron. Soc., Volume 398 (2009), pp. 1936-1950

[183] N. Gupta; B. Zhang Diagnosing the site of gamma-ray burst prompt emission with spectral cut-off energy, Month. Not. Roy. Astron. Soc., Volume 384 (2008), p. L11-L15

[184] P. Kumar et al. The nature of the outflow in gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 376 (2007), p. L57-L61

[185] P. Kumar; E. McMahon A general scheme for modelling γ-ray burst prompt emission, Month. Not. Roy. Astron. Soc., Volume 384 (2008), pp. 33-63

[186] Y.-Z. Fan; B. Zhang; D.-M. Wei Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow, Phys. Rev. D, Volume 79 (2009) no. 2, p. 021301

[187] Y.-C. Zou; T. Piran; R. Sari Clues from the prompt emission of GRB 080319B, Astrophys. J., Volume 692 (2009), p. L92-L95

[188] L. Resmi, B. Zhang, Gamma ray burst prompt emission variability in synchrotron and synchrotron self-Compton lightcurves, Month. Not. Roy. Astron. Soc. (2010), submitted for publication.

[189] E. Waxman Cosmological gamma-ray bursts and the highest energy cosmic rays, Phys. Rev. Lett., Volume 75 (1995), pp. 386-389

[190] M. Vietri The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts, Astrophys. J., Volume 453 (1995), pp. 883-889

[191] E. Waxman; J. Bahcall High energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett., Volume 78 (1997), pp. 2292-2295

[192] P. Mészáros; E. Waxman TeV neutrinos from successful and choked gamma-ray bursts, Phys. Rev. Lett., Volume 87 (2001) no. 17, p. 171102

[193] S. Razzaque; P. Mészáros; E. Waxman Neutrino signatures of the supernova: Gamma ray burst relationship, Phys. Rev. D, Volume 69 (2004) no. 2, p. 023001

[194] B. Paczýnski; G. Xu Neutrino bursts from gamma-ray bursts, Astrophys. J., Volume 427 (1994), pp. 708-713

[195] P. Mészáros; P. Laguna; M.J. Rees Gas dynamics of relativistically expanding gamma-ray burst sources – Kinematics, energetics, magnetic fields, and efficiency, Astrophys. J., Volume 415 (1993), pp. 181-190

[196] P. Mészáros; M.J. Rees Optical and long-wavelength afterglow from gamma-ray bursts, Astrophys. J., Volume 476 (1997), p. 232

[197] R. Sari; T. Piran GRB 990123: The optical flash and the fireball model, Astrophys. J., Volume 517 (1999), p. L109-L112

[198] S. Kobayashi Light curves of gamma-ray burst optical flashes, Astrophys. J., Volume 545 (2000), pp. 807-812

[199] R. Sari; T. Piran Hydrodynamic timescales and temporal structure of gamma-ray bursts, Astrophys. J., Volume 455 (1995), p. L143-L146

[200] R.D. Blandford; C.F. McKee Fluid dynamics of relativistic blast waves, Phys. Fluids, Volume 19 (1976), pp. 1130-1138

[201] M.J. Rees; P. Mészáros Refreshed shocks and afterglow longevity in gamma-ray bursts, Astrophys. J., Volume 496 (1998), p. L1-L4

[202] K.-I. Nishikawa et al. Particle acceleration and magnetic field generation in electron–positron relativistic shocks, Astrophys. J., Volume 622 (2005), pp. 927-937

[203] A. Spitkovsky Particle acceleration in relativistic collisionless shocks: Fermi process at last?, Astrophys. J., Volume 682 (2008), p. L5-L8

[204] K.-I. Nishikawa et al. Weibel instability and associated strong fields in a fully three-dimensional simulation of a relativistic shock, Astrophys. J., Volume 698 (2009), p. L10-L13

[205] C.F. Kennel; F.V. Coroniti Confinement of the Crab pulsarʼs wind by its supernova remnant, Astrophys. J., Volume 283 (1984), pp. 694-709

[206] L. Sironi; A. Spitkovsky Particle acceleration in relativistic magnetized collisionless pair shocks: Dependence of shock acceleration on magnetic obliquity, Astrophys. J., Volume 698 (2009), pp. 1523-1549

[207] P.A. Sweet The neutral point theory of solar flares (B. Lehnert, ed.), Electromagnetic Phenomena in Cosmical Physics, IAU Symposium, vol. 6, 1958, pp. 123-134

[208] E.N. Parker Sweetʼs mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., Volume 62 (1957), pp. 509-520

[209] C. Thompson A model of gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 270 (1994), p. 480

[210] M.J. Rees; P. Mészáros Dissipative photosphere models of gamma-ray bursts and X-ray flashes, Astrophys. J., Volume 628 (2005), pp. 847-852

[211] C. Thompson; P. Mészáros; M.J. Rees Thermalization in relativistic outflows and the correlation between spectral hardness and apparent luminosity in gamma-ray bursts, Astrophys. J., Volume 666 (2007), pp. 1012-1023

[212] A. Lazarian; E.T. Vishniac Reconnection in a weakly stochastic field, Astrophys. J., Volume 517 (1999), pp. 700-718

[213] E. Liang; K. Noguchi Radiation from comoving Poynting flux acceleration, Astrophys. J., Volume 705 (2009), pp. 1473-1480

[214] M.V. Smolsky; V.V. Usov Relativistic beam–magnetic barrier collision and nonthermal radiation of cosmological γ-ray bursters, Astrophys. J., Volume 461 (1996), pp. 858-871

[215] J.S.T. Ng; R.J. Noble Inductive and electrostatic acceleration in relativistic jet–plasma interactions, Phys. Rev. Lett., Volume 96 (2006) no. 11, p. 115006

[216] M. Lemoine; G. Pelletier Shock acceleration in gamma-ray bursts, C. R. Physique, Volume 12 (2011), pp. 234-245 (this issue)

[217] D. Band et al. BATSE observations of gamma-ray burst spectra. I – Spectral diversity, Astrophys. J., Volume 413 (1993), pp. 281-292

[218] P. Mészáros; M.J. Rees; H. Papathanassiou Spectral properties of blast-wave models of gamma-ray burst sources, Astrophys. J., Volume 432 (1994), pp. 181-193

[219] M. Tavani A shock emission model for gamma-ray bursts. II. Spectral properties, Astrophys. J., Volume 466 (1996), pp. 768-778

[220] M.V. Medvedev; A. Loeb Generation of magnetic fields in the relativistic shock of gamma-ray burst sources, Astrophys. J., Volume 526 (1999), pp. 697-706

[221] G. Ghisellini; A. Celotti; D. Lazzati Constraints on the emission mechanisms of gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 313 (2000), p. L1-L5

[222] A. Peʼer; B. Zhang Synchrotron emission in small-scale magnetic fields as a possible explanation for prompt emission spectra of gamma-ray bursts, Astrophys. J., Volume 653 (2006), pp. 454-461

[223] K. Asano; T. Terasawa Slow heating model of gamma-ray burst: Photon spectrum and delayed emission, Astrophys. J., Volume 705 (2009), pp. 1714-1720

[224] F. Daigne; Z. Bosnjak; G. Dubus Reconciling observed GRB prompt spectra with synchrotron radiation?, Astron. Astrophys., Volume 526 (2011), p. 110

[225] R.D. Preece et al. The synchrotron shock model confronts a “line of death” in the BATSE gamma-ray burst data, Astrophys. J., Volume 506 (1998), p. L23-L26

[226] P. Mészáros; M.J. Rees Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and comptonization, Astrophys. J., Volume 530 (2000), pp. 292-298

[227] N.M. Lloyd; V. Petrosian Synchrotron radiation as the source of gamma-ray burst spectra, Astrophys. J., Volume 543 (2000), pp. 722-732

[228] M.V. Medvedev Theory of “jitter” radiation from small-scale random magnetic fields and prompt emission from gamma-ray burst shocks, Astrophys. J., Volume 540 (2000), pp. 704-714

[229] F. Daigne; R. Mochkovitch Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties, Month. Not. Roy. Astron. Soc., Volume 296 (1998), pp. 275-286

[230] A.M. Bykov; P. Meszaros Electron acceleration and efficiency in nonthermal gamma-ray sources, Astrophys. J., Volume 461 (1996), p. L37-L40

[231] M.V. Medvedev Electron acceleration in relativistic gamma-ray burst shocks, Astrophys. J., Volume 651 (2006), p. L9-L11

[232] L. Sironi; A. Spitkovsky Synthetic spectra from particle-in-cell simulations of relativistic collisionless shocks, Astrophys. J., Volume 707 (2009), p. L92-L96

[233] S. Zenitani; M. Hesse The role of the Weibel instability at the reconnection jet front in relativistic pair plasma reconnection, Phys. Plasma, Volume 15 (2008), p. 022101

[234] A. Panaitescu; P. Mészáros Gamma-ray bursts from upscattered self-absorbed synchrotron emission, Astrophys. J., Volume 544 (2000), p. L17-L21

[235] Z. Bosnjak; D. Daigne; G. Dubus Prompt high-energy emission from gamma-ray bursts in the internal shock model, Astron. Astrophys., Volume 498 (2009), pp. 677-703

[236] P. Kumar; R. Narayan GRB 080319B: evidence for relativistic turbulence, not internal shocks, Month. Not. Roy. Astron. Soc., Volume 395 (2009), pp. 472-489

[237] E.V. Derishev; V.V. Kocharovsky; V.V. Kocharovsky Physical parameters and emission mechanism in gamma-ray bursts, Astron. Astrophys., Volume 372 (2001), pp. 1071-1077

[238] T. Piran; R. Sari; Y.-C. Zou Observational limits on inverse Compton processes in gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 393 (2009), pp. 1107-1113

[239] G. Beskin et al. Fast optical variability of a naked-eye burst – Manifestation of the periodic activity of an internal engine, Astrophys. J., Volume 719 (2010), p. L10-L14

[240] A. Peʼer; P. Mészáros; M.J. Rees The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J., Volume 642 (2006), pp. 995-1003

[241] C. Thompson Deceleration of a relativistic, photon-rich shell: End of preacceleration, damping of magnetohydrodynamic turbulence, and the emission mechanism of gamma-ray bursts, Astrophys. J., Volume 651 (2006), pp. 333-365

[242] D. Giannios Prompt GRB emission from gradual energy dissipation, Astron. Astrophys., Volume 480 (2008), pp. 305-312

[243] A. Peʼer, F. Ryde, A theory of multicolor black body emission from relativistically expanding plasmas, Astrophys. J. (2010), submitted for publication, . | arXiv

[244] D. Lazzati et al. Compton-dragged gamma-ray bursts associated with supernovae, Astrophys. J., Volume 529 (2000), p. L17-L20

[245] A. Dar; A. de Rújula Towards a complete theory of gamma-ray bursts, Phys. Rep., Volume 405 (2004), pp. 203-278

[246] X.-Y. Wang et al. Nonthermal gamma-ray/X-ray flashes from shock breakout in gamma-ray burst-associated supernovae, Astrophys. J., Volume 664 (2007), pp. 1026-1032

[247] N. Gupta; B. Zhang Prompt emission of high-energy photons from gamma ray bursts, Month. Not. Roy. Astron. Soc., Volume 380 (2007), pp. 78-92

[248] K. Asano; S. Inoue; P. Mészáros Prompt high-energy emission from proton-dominated gamma-ray bursts, Astrophys. J., Volume 699 (2009), pp. 953-957

[249] S. Razzaque; C.D. Dermer; J.D. Fink Synchrotron radiation from ultra-high energy protons and the Fermi observations of GRB 080916C, Open Astron. J., Volume 1 (2010), pp. 150-155

[250] N.J. Shaviv; A. Dar Gamma-ray bursts from minijets, Astrophys. J., Volume 447 (1995), pp. 863-873

[251] D. Lazzati et al. Compton drag as a mechanism for very high linear polarization in gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 347 (2004), p. L1-L5

[252] J.L. Atteia; M. Boer Observing the prompt emission of GRBs, C. R. Physique, Volume 12 (2011), pp. 255-266 (this issue)

[253] D.N. Burrows et al. Bright X-ray flares in gamma-ray burst afterglows, Science, Volume 309 (2005), pp. 1833-1835

[254] G. Chincarini et al. The first survey of X-ray flares from gamma-ray bursts observed by Swift: Temporal properties and morphology, Astrophys. J., Volume 671 (2007), pp. 1903-1920

[255] A.D. Falcone et al. The first survey of X-ray flares from gamma-ray bursts observed by Swift: Spectral properties and energetics, Astrophys. J., Volume 671 (2007), pp. 1921-1938

[256] K. Ioka; S. Kobayashi; B. Zhang Variabilities of gamma-ray burst afterglows: Long-acting engine, anisotropic jet, or many fluctuating regions?, Astrophys. J., Volume 631 (2005), pp. 429-434

[257] Y.Z. Fan; D.M. Wei Late internal-shock model for bright X-ray flares in gamma-ray burst afterglows and GRB 011121, Month. Not. Roy. Astron. Soc., Volume 364 (2005), p. L42-L46

[258] D. Lazzati; R. Perna X-ray flares and the duration of engine activity in gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 375 (2007), p. L46-L50

[259] A. Maxham; B. Zhang Modeling gamma-ray burst X-ray flares within the internal shock model, Astrophys. J., Volume 707 (2009), pp. 1623-1633

[260] A.M. Beloborodov et al. Is GRB afterglow emission intrinsically anisotropic?, Month. Not. Roy. Astron. Soc., Volume 410 (2011), pp. 2422-2427 | arXiv | DOI

[261] R. Sari; P. Mészáros Impulsive and varying injection in gamma-ray burst afterglows, Astrophys. J., Volume 535 (2000), p. L33-L37

[262] G. Ghisellini et al. “Late prompt” emission in gamma-ray bursts?, Astrophys. J., Volume 658 (2007), p. L75-L78

[263] P. Kumar; R. Narayan; J.L. Johnson Mass fall-back and accretion in the central engine of gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 388 (2008), pp. 1729-1742

[264] J.K. Cannizzo; N. Gehrels A new paradigm for gamma-ray bursts: Long-term accretion rate modulation by an external accretion disk, Astrophys. J., Volume 700 (2009), pp. 1047-1058

[265] C.C. Lindner et al. Collapsar accretion and the gamma-ray burst X-ray light curve, Astrophys. J., Volume 713 (2010), pp. 800-815

[266] A. Panaitescu et al. Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications, Month. Not. Roy. Astron. Soc., Volume 369 (2006), pp. 2059-2064

[267] E.-W. Liang et al. Temporal profiles and spectral lags of XRF 060218, Astrophys. J., Volume 653 (2006), p. L81-L84

[268] M. de Pasquale et al. Jet breaks at the end of the slow decline phase of Swift GRB light curves, Month. Not. Roy. Astron. Soc., Volume 392 (2009), pp. 153-169

[269] F. Genet; F. Daigne; R. Mochkovitch Can the early X-ray afterglow of gamma-ray bursts be explained by a contribution from the reverse shock?, Month. Not. Roy. Astron. Soc., Volume 381 (2007), pp. 732-740

[270] Z.L. Uhm; A.M. Beloborodov On the mechanism of gamma-ray burst afterglows, Astrophys. J., Volume 665 (2007), p. L93-L96

[271] L. Shao; Z.G. Dai A reverse-shock model for the early afterglow of GRB 050525A, Astrophys. J., Volume 633 (2005), pp. 1027-1030

[272] R.-F. Shen et al. The dust scattering model cannot explain the shallow X-ray decay in GRB afterglows, Month. Not. Roy. Astron. Soc., Volume 393 (2009), pp. 598-606

[273] X.-F. Wu, B. Zhang, X-ray afterglow from photosphere of a long lasting engine-driven wind, Astrophys. J. (2011), submitted for publication.

[274] A. King et al. Gamma-ray bursts: Restarting the engine, Astrophys. J., Volume 630 (2005), p. L113-L115

[275] R. Perna; P.J. Armitage; B. Zhang Flares in long and short gamma-ray bursts: A common origin in a hyperaccreting accretion disk, Astrophys. J., Volume 636 (2006), p. L29-L32

[276] D. Proga; B. Zhang The late time evolution of gamma-ray bursts: ending hyperaccretion and producing flares, Month. Not. Roy. Astron. Soc., Volume 370 (2006), p. L61-L65

[277] Z.G. Dai et al. X-ray flares from postmerger millisecond pulsars, Science, Volume 311 (2006), pp. 1127-1129

[278] W.H. Lee; E. Ramirez-Ruiz; D. López-Cámara Phase transitions and He-synthesis-driven winds in neutrino cooled accretion disks: Prospects for late flares in short gamma-ray bursts, Astrophys. J., Volume 699 (2009), p. L93-L96

[279] R. Popham; S.E. Woosley; C. Fryer Hyperaccreting black holes and gamma-ray bursts, Astrophys. J., Volume 518 (1999), pp. 356-374

[280] F. Yuan, et al., in preparation.

[281] Y.Z. Fan; B. Zhang; D. Proga Linearly polarized X-ray flares following short gamma-ray bursts, Astrophys. J., Volume 635 (2005), p. L129-L132

[282] A.I. MacFadyen; S.E. Woosley; A. Heger Supernovae, jets, and collapsars, Astrophys. J., Volume 550 (2001), pp. 410-425

[283] S. Rosswog Fallback accretion in the aftermath of a compact binary merger, Month. Not. Roy. Astron. Soc., Volume 376 (2007), p. L48-L51

[284] D. Lazzati; R. Perna; M.C. Begelman X-ray flares, neutrino-cooled discs and the dynamics of late accretion in gamma-ray burst engines, Month. Not. Roy. Astron. Soc., Volume 388 (2008), p. L15-L19

[285] A. Corsi; P. Mészáros Gamma-ray burst afterglow plateaus and gravitational waves: Multi-messenger signature of a millisecond magnetar?, Astrophys. J., Volume 702 (2009), pp. 1171-1178

[286] R. Sari; T. Piran; R. Narayan Spectra and light curves of gamma-ray burst afterglows, Astrophys. J., Volume 497 (1998), p. L17

[287] Z.G. Dai; T. Lu Gamma-ray burst afterglows: effects of radiative corrections and non-uniformity of the surrounding medium, Month. Not. Roy. Astron. Soc., Volume 298 (1998), pp. 87-92

[288] R.A. Chevalier; Z.-Y. Li Wind interaction models for gamma-ray burst afterglows: The case for two types of progenitors, Astrophys. J., Volume 536 (2000), pp. 195-212

[289] R.A.M.J. Wijers; T.J. Galama Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission, Astrophys. J., Volume 523 (1999), pp. 177-186

[290] A. Panaitescu; P. Kumar Fundamental physical parameters of collimated gamma-ray burst afterglows, Astrophys. J., Volume 560 (2001), p. L49-L53

[291] A. Panaitescu; P. Kumar Properties of relativistic jets in gamma-ray burst afterglows, Astrophys. J., Volume 571 (2002), pp. 779-789

[292] S.A. Yost et al. A study of the afterglows of four gamma-ray bursts: Constraining the explosion and fireball model, Astrophys. J., Volume 597 (2003), pp. 459-473

[293] J.E. Rhoads The dynamics and light curves of beamed gamma-ray burst afterglows, Astrophys. J., Volume 525 (1999), pp. 737-749

[294] R. Sari; T. Piran; J.P. Halpern Jets in gamma-ray bursts, Astrophys. J., Volume 519 (1999), p. L17-L20

[295] B. Zhang; P. Mészáros Gamma-ray bursts with continuous energy injection and their afterglow signature, Astrophys. J., Volume 566 (2002), pp. 712-722

[296] P. Mészáros; M.J. Rees; R.A.M.J. Wijers Viewing angle and environment effects in gamma-ray bursts: Sources of afterglow diversity, Astrophys. J., Volume 499 (1998), pp. 301-308

[297] B. Zhang; P. Mészáros Gamma-ray burst beaming: A universal configuration with a standard energy reservoir?, Astrophys. J., Volume 571 (2002), pp. 876-879

[298] E. Rossi; D. Lazzati; M.J. Rees Afterglow light curves, viewing angle and the jet structure of γ-ray bursts, Month. Not. Roy. Astron. Soc., Volume 332 (2002), pp. 945-950

[299] Y.F. Huang; Z.G. Dai; T. Lu A generic dynamical model of gamma-ray burst remnants, Month. Not. Roy. Astron. Soc., Volume 309 (1999), pp. 513-516

[300] Y.F. Huang; K.S. Cheng Gamma-ray bursts: optical afterglows in the deep Newtonian phase, Month. Not. Roy. Astron. Soc., Volume 341 (2003), pp. 263-269

[301] A. Panaitescu et al. Analysis of the X-ray emission of nine Swift afterglows, Month. Not. Roy. Astron. Soc., Volume 366 (2006), pp. 1357-1366

[302] D. Grupe et al. Swift and XMM–Newton observations of the extraordinary gamma-ray burst 060729: More than 125 days of X-ray afterglow, Astrophys. J., Volume 662 (2007), pp. 443-458

[303] V. Mangano et al. Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow, Astron. Astrophys., Volume 470 (2007), pp. 105-118

[304] E. Berger; S.R. Kulkarni; D.A. Frail A standard kinetic energy reservoir in gamma-ray burst afterglows, Astrophys. J., Volume 590 (2003), pp. 379-385

[305] X. Dai et al. Go long, go deep: Finding optical jet breaks for Swift-era GRBs with the LBT, Astrophys. J., Volume 682 (2008), p. L77-L80

[306] S. Kobayashi; B. Zhang GRB 021004: Reverse shock emission, Astrophys. J., Volume 582 (2003), p. L75-L78

[307] C. Akerlof et al. Observation of contemporaneous optical radiation from a γ-ray burst, Nature, Volume 398 (1999), pp. 400-402

[308] Z.P. Jin; Y.Z. Fan GRB 060418 and 060607A: the medium surrounding the progenitor and the weak reverse shock emission, Month. Not. Roy. Astron. Soc., Volume 378 (2007), pp. 1043-1048

[309] X.F. Wu et al. Optical flashes and very early afterglows in wind environments, Month. Not. Roy. Astron. Soc., Volume 342 (2003), pp. 1131-1138

[310] S. Kobayashi; B. Zhang Early optical afterglows from wind-type gamma-ray bursts, Astrophys. J., Volume 597 (2003), pp. 455-458

[311] S. Kobayashi et al. Inverse Compton X-ray flare from gamma-ray burst reverse shock, Astrophys. J., Volume 655 (2007), pp. 391-395

[312] X.Y. Wang; Z.G. Dai; T. Lu Prompt high-energy gamma-ray emission from the synchrotron self-Compton process in the reverse shocks of gamma-ray bursts, Astrophys. J., Volume 546 (2001), p. L33-L37

[313] X.Y. Wang; Z.G. Dai; T. Lu The inverse Compton emission spectra in the very early afterglows of gamma-ray bursts, Astrophys. J., Volume 556 (2001), pp. 1010-1016

[314] O. Godet; R. Mochkovitch Afterglows after Swift, C. R. Physique, Volume 12 (2011), pp. 276-287 (this issue)

[315] K. Hurley et al. Detection of a gamma-ray burst of very long duration and very high energy, Nature, Volume 372 (1994), pp. 652-654

[316] M.M. González et al. A γ-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model, Nature, Volume 424 (2003), pp. 749-751

[317] F. Piron; V. Connaughton The Fermi view of gamma-ray bursts, C. R. Physique, Volume 12 (2011), pp. 267-275 (this issue)

[318] M. Ackermann et al. Detection of a spectral break in the extra hard component of GRB 090926A, Astrophys. J., Volume 729 (2011), p. 114

[319] G. Ghisellini et al. GeV emission from gamma-ray bursts: a radiative fireball?, Month. Not. Roy. Astron. Soc., Volume 403 (2010), pp. 926-937

[320] A. Maxham, B.-B. Zhang, B. Zhang, Is GeV emission from gamma-ray bursts of external shock origin?, Month. Not. Roy. Astron. Soc. (2011), in press, . | arXiv

[321] K. Toma, X.-F. Wu, P. Mészáros, A photosphere-internal shock model of gamma-ray bursts: Implications for the Fermi/LAT results, Month. Not. Roy. Astron. Soc. (2010), submitted for publication, . | arXiv

[322] P. Kumar; R. Barniol Duran On the generation of high-energy photons detected by the Fermi satellite from gamma-ray bursts, Month. Not. Roy. Astron. Soc., Volume 400 (2009), p. L75-L79

[323] P. Kumar; R. Barniol Duran External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi, Month. Not. Roy. Astron. Soc., Volume 409 (2010), pp. 226-236

[324] K. Toma; X.-F. Wu; P. Mészáros An up-scattered cocoon emission model of gamma-ray burst high-energy lags, Astrophys. J., Volume 707 (2009), pp. 1404-1416

[325] X.-Y. Wang et al. Klein–Nishina effects on the high-energy afterglow emission of gamma-ray bursts, Astrophys. J., Volume 712 (2010), pp. 1232-1240

[326] S.Y. Feng, Z.G. Dai, Multiband fitting to three long GRBs with Fermi/LAT data: Structured ejecta sweeping up a density-jump medium, Astrophys. J. (2010), submitted for publication, . | arXiv

[327] H.-N. He, et al., On the high energy emission of the short GRB 090510, Astrophys. J. (2010), in press, . | arXiv

[328] R.-Y. Liu; X.-Y. Wang Modeling the broadband emission of Fermi/LAT GRB 090902B, Astrophys. J., Volume 730 (2011), p. 1 | arXiv | DOI

[329] Z. Li Prompt GeV emission from residual collisions in gamma-ray burst outflows: Evidence from Fermi observations of GRB 080916C, Astrophys. J., Volume 709 (2010), pp. 525-534

[330] K. Ioka Very high Lorentz factor fireballs and gamma-ray burst spectra, Prog. Theor. Phys., Volume 124 (2010), pp. 667-710

[331] M. De Pasquale et al. Swift and Fermi observations of the early afterglow of the short gamma-ray burst 090510, Astrophys. J., Volume 709 (2010), p. L146-L151

[332] A.M. Hopkins; J.F. Beacom On the normalization of the cosmic star formation history, Astrophys. J., Volume 651 (2006), pp. 142-154

[333] M.D. Kistler et al. An unexpectedly Swift rise in the gamma-ray burst rate, Astrophys. J., Volume 673 (2008), p. L119-L122

[334] V. Bromm; A. Loeb High-redshift gamma-ray bursts from Population III progenitors, Astrophys. J., Volume 642 (2006), pp. 382-388

[335] N.R. Butler; J.S. Bloom; D. Poznanski The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts, Astrophys. J., Volume 711 (2010), pp. 495-516

[336] S.-F. Qin et al. Simulations on high-z long gamma-ray burst rate, Month. Not. Roy. Astron. Soc., Volume 406 (2010), pp. 558-565

[337] F. Virgili, et al., in preparation.

[338] M.A. Campisi et al. Properties of long gamma-ray burst host galaxies in cosmological simulations, Month. Not. Roy. Astron. Soc., Volume 400 (2009), pp. 1613-1624

[339] G.P. Holder et al. The reionization history at high redshifts. II. Estimating the optical depth to Thomson scattering from cosmic microwave background polarization, Astrophys. J., Volume 595 (2003), pp. 13-18

[340] X. Fan; C.L. Carilli; B. Keating Observational constraints on cosmic reionization, Annu. Rev. Astron. Astrophys., Volume 44 (2006), pp. 415-462

[341] T. Totani et al. Implications for cosmic reionization from the optical afterglow spectrum of the gamma-ray burst 050904 at z=6.3, Publ. Astron. Soc. Jpn., Volume 58 (2006), pp. 485-498

[342] K. Nagamine; B. Zhang; L. Hernquist Incidence rate of GRB-host DLAs at high redshift, Astrophys. J., Volume 686 (2008), p. L57-L60

[343] A. Pontzen et al. The nature of HI absorbers in gamma-ray burst afterglows: clues from hydrodynamic simulations, Month. Not. Roy. Astron. Soc., Volume 402 (2010), pp. 1523-1535

[344] T. Abel; G.L. Bryan; M.L. Norman The formation of the first star in the universe, Science, Volume 295 (2002), pp. 93-98

[345] S.S. Komissarov; M.V. Barkov Supercollapsars and their X-ray bursts, Month. Not. Roy. Astron. Soc., Volume 402 (2010), p. L25-L29

[346] P. Mészáros; M.J. Rees Population III gamma-ray bursts, Astrophys. J., Volume 715 (2010), pp. 967-971

[347] M.J. Turk; T. Abel; B. OʼShea The formation of Population III binaries from cosmological initial conditions, Science, Volume 325 (2009), pp. 601-603

[348] A. Janiuk; D. Proga Low angular momentum accretion in the collapsar: How long can a long GRB be?, Astrophys. J., Volume 675 (2008), pp. 519-527

[349] A. Janiuk; R. Moderski; D. Proga On the duration of long GRBs: Effects of black hole spin, Astrophys. J., Volume 687 (2008), pp. 433-442

[350] P. Petitjean; S.D. Vergani Gamma-ray bursts as probes of the distant Universe, C. R. Physique, Volume 12 (2011), pp. 288-297 (this issue)

[351] R. Yamazaki Prior emission model for X-ray plateau phase of gamma-ray burst afterglows, Astrophys. J., Volume 690 (2009), p. L118-L121

[352] E.-W. Liang et al. A comprehensive analysis of Swift/X-ray telescope data. IV. Single power-law decaying light curves versus canonical light curves and implications for a unified origin of X-rays, Astrophys. J., Volume 707 (2009), pp. 328-342

Cité par Sources :

Commentaires - Politique