[Supraconductivité à lʼinterface dʼoxydes]
Cette courte revue couvre le champ émergeant de recherche de la supraconductivité à lʼinterface dʼoxydes complexes. La première partie est consacrée à la prédiction et à lʼobservation dʼun état supraconducteur à lʼinterface entre une couche cuprate métallique et une couche cuprate isolante. Dans la deuxième partie du manuscrit, la découverte et la modulation de la supraconductivité à lʼinterface de deux oxydes isolants, le LaAlO3 et le SrTiO3, est décrite. Ces exemples servent à illustrer le potentiel que détiennent les interfaces dʼoxydes complexes. Ce champ dʼactivité pourrait ouvrir la voie à lʼaugmentaion de la température critique ou éventuellement à la decouverte de nouveaux supraconducteurs.
This short review covers the emerging research field of interface superconductivity in complex oxide heterostructures. The first part of the paper is devoted to the prediction and observation of an interfacial superconducting state in metallic/insulating copper oxide bilayers. In the second part of the manuscript, the discovery and the modulation of superconductivity at the interface between two insulating oxides, LaAlO3 and SrTiO3, is described. These examples serve as an illustration of the potential that interfaces hold for revealing novel electronic behavior in complex oxide heterostructures, opening possibly a path to enhance the critical temperature or to discover new superconductors.
Mot clés : Supraconductivité, Oxydes complexes, Bi-dimensionalité, Cuprates, Diagramme de phase, Effet de champ électrique
Stefano Gariglio 1 ; Jean-Marc Triscone 1
@article{CRPHYS_2011__12_5-6_591_0, author = {Stefano Gariglio and Jean-Marc Triscone}, title = {Oxide interface superconductivity}, journal = {Comptes Rendus. Physique}, pages = {591--599}, publisher = {Elsevier}, volume = {12}, number = {5-6}, year = {2011}, doi = {10.1016/j.crhy.2011.03.006}, language = {en}, }
Stefano Gariglio; Jean-Marc Triscone. Oxide interface superconductivity. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 591-599. doi : 10.1016/j.crhy.2011.03.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.006/
[1] When oxides meet face to face, Science, Volume 318 (2007), p. 1076
[2] Oxide interfaces–an opportunity for electronics, Science, Volume 327 (2010), pp. 1607-1611
[3] Interface physics in complex oxide heterostructures, Ann. Rev. Cond. Matt. Phys., Volume 2 (2011), pp. 141-165
[4] Properties of a 2d electron gas with lifted spectral degeneracy, JETP Lett., Volume 39 (1984), p. 78
[5] Rashba-type spin-orbit splitting of quantum well states in ultrathin Pb films, Phys. Rev. Lett., Volume 101 (2008), p. 266802
[6] Tunable Rashba spin–orbit interaction at oxide interfaces, Phys. Rev. Lett., Volume 104 (2010), p. 126803
[7] Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study, Phys. Rev. Lett., Volume 104 (2010), p. 126802
[8] Topological change of the Fermi surface in low-density Rashba gases: Application to superconductivity, Phys. Rev. Lett., Volume 98 (2007), p. 167002
[9] Magnetism at the interface between ferromagnetic and superconducting oxides, Nat. Phys., Volume 2 (2006), pp. 244-248
[10] Orbital reconstruction and covalent bonding at an oxide interface, Science, Volume 318 (2007), pp. 1114-1117
[11] Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice, Nat. Mater., Volume 8 (2009), pp. 315-319
[12] Electric-field-induced superconductivity in an insulator, Nat. Mater., Volume 7 (2008), pp. 855-858
[13] Local switching of two-dimensional superconductivity using the ferroelectric field effect, Nature, Volume 441 (2006), pp. 195-198
[14] Electric field effect in correlated oxide systems, Nature, Volume 424 (2003), pp. 1015-1018
[15] Electrostatic modification of novel materials, Rev. Modern Phys., Volume 78 (2006), p. 1185
[16] Making high higher: A theoretical proposal, J. Phys. B: Condens. Matter, Volume 318 (2002), pp. 61-67
[17] Route to high-temperature superconductivity in composite systems, Phys. Rev. B, Volume 78 (2008), p. 094509
[18] Enhancement of the superconducting transition temperature of La2 − xSrxCuO4 bilayers: Role of pairing and phase stiffness, Phys. Rev. Lett., Volume 101 (2008), p. 057005
[19] Zh. Eksper. Teoret. Fiz., 61 (1971), p. 1144
[20] Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems, Sov. Phys. JETP, Volume 34 (1971), p. 610
[21] Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory), J. Phys. C, Volume 5 (1972), p. L124
[22] High-temperature interface superconductivity between metallic and insulating copper oxides, Nature, Volume 455 (2008), pp. 782-785
[23] Engineering interfaces in cuprate superconductors, Phys. B: Condens. Matter, Volume 403 (2008), pp. 1149-1150
[24] Enhanced superconductivity in superlattices of high- cuprates, Phys. Rev. Lett., Volume 101 (2008), p. 156401
[25] Superconducting transition at 38 K in insulating-overdoped La2CuO4–La1.64Sr0.36CuO4 superlattices: Evidence for interface electronic redistribution from resonant soft X-ray scattering, Phys. Rev. Lett., Volume 102 (2009), p. 107004
[26] Artificial charge-modulation in atomic-scale perovskite titanate superlattices, Nature, Volume 419 (2002), pp. 378-380
[27] Oxide materials: Superconductivity on the other side, Nat. Nano., Volume 5 (2010), pp. 13-14
[28] High-temperature superconductivity in a single copper-oxygen plane, Science, Volume 326 (2009), pp. 699-702
[29] A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, Volume 427 (2004), pp. 423-426
[30] Superconductivity at the LaAlO3/SrTiO3 interface, J. Phys.: Condens. Matter, Volume 21 (2009), p. 164213
[31] Why some interfaces cannot be sharp, Nat. Mater., Volume 5 (2006), pp. 204-209
[32] Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion, Phys. Rev. Lett., Volume 102 (2009), p. 107602
[33] Charge origin and localization at the n-type SrTiO3/LaAlO3 interface, Phys. Rev. B, Volume 78 (2008), p. 193104
[34] Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface, Phys. Rev. Lett., Volume 101 (2008), p. 256801
[35] Influence of the growth conditions on the LaAlO3/SrTiO3 interface electronic properties, Europhys. Lett., Volume 91 (2010), p. 17004 (and references therein)
[36] Structural basis for the conducting interface between LaAlO3 and SrTiO3, Phys. Rev. Lett., Volume 99 (2007), p. 155502
[37] Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy, Phys. Rev. B, Volume 79 (2009), p. 081405
[38] Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science, Volume 313 (2006), pp. 1942-1945
[39] Superconducting interfaces between insulating oxides, Science, Volume 317 (2007), pp. 1196-1199
[40] Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface, Appl. Phys. Lett., Volume 94 (2009), p. 112506
[41] Electrostatically-tuned superconductor-metal-insulator quantum transition at the LaAlO3/SrTiO3 interface, Phys. Rev. B, Volume 79 (2009), p. 184502
[42] Vortex-antivortex crystallization in thin superconducting and superfluid films, Phys. Rev. Lett., Volume 71 (1993), p. 2138
[43] Broadening of the Berezinskii–Kosterlitz–Thouless superconducting transition by inhomogeneity and finite-size effects, Phys. Rev. B, Volume 80 (2009), p. 214506
[44] Analysis of current-voltage characteristics of two-dimensional superconductors: Finite-size scaling behavior in the vicinity of the Kosterlitz–Thouless transition, Phys. Rev. B, Volume 62 (2000), pp. 14531-14540
[45] Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature, Volume 456 (2008), pp. 624-627
[46] Field-effect experiments in ultrathin films using a SrTiO3 single-crystal gate insulator, Appl. Phys. Lett., Volume 83 (2003), p. 3758
[47] Weak localization in thin films: A time-of-flight experiment with conduction electrons, Phys. Rep., Volume 107 (1984), pp. 1-58
[48] Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface, Phys. Rev. Lett., Volume 103 (2009), p. 226802
[49] Quantum Phases Transitions, Cambridge Univ. Press, 1999
[50] Magnetic-field-tuned superconductor–insulator transition in two-dimensional films, Phys. Rev. Lett., Volume 65 (1990), pp. 927-930
[51] Observation of Kosterlitz–Thouless-type melting of the disordered vortex lattice in thin films of a-MoGe, Phys. Rev. Lett., Volume 70 (1993), pp. 505-508
[52] Superconducting–insulating transition in two-dimensional a-MoGe thin films, Phys. Rev. Lett., Volume 74 (1995), pp. 3037-3040
[53] Nanoscale control of an interfacial metal–insulator transition at room temperature, Nat. Mater., Volume 7 (2008), pp. 298-302
[54] Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces, Phys. Rev. Lett., Volume 105 (2010), p. 236802
Cité par Sources :
Commentaires - Politique