Comptes Rendus
Article de recherche
Topological phases driven by orbital entanglement in Transition Metal Oxide Perovskite interfaces
[Phases topologiques induites par intrication des composantes orbitales aux interfaces d’oxydes de métaux de transition]
Comptes Rendus. Physique, Volume 25 (2024), pp. 303-327.

En dépit de l’apparente simplicité de leur structure cristallographique, les perovskites de métaux de transition présentent une grande richesse et complexité de phases électroniques, magnétiques et structurales. L’existence de différents types de défauts, de rotations et déformations des octaèdres oxygène-ion de transition expliquent en partie ce phénomène. De plus, le caractère d des fonctions d’ondes de l’ion de transition introduit un degré de liberté supplémentaire, susceptible de mener à l’intrication des fonctions d’onde du composé. Ceci confère à ces matériaux des propriétés topologiques en dimension réduite. Nous présentons ici quelques unes des caractéristiques topologiques aux interfaces et surfaces d’hétérostructures de certaines perovskites, lorsque la croissance est effectuée selon les orientations (001) et (111). Contrairement au cas très étudié des isolants topologiques, la topologie se manifeste dans le régime métallique, avec pour conséquence un réel potentiel sur le plan de l’ingénierie spintronique et du calcul quantique. Nous concluons par un hommage personnel à la mémoire de Gérard Toulouse.

The deceptively simple crystallographic structure of early transition metal oxide perovskites belies the complexity and variety of electronic, magnetic and structural phases that they display. Structural defects, rotations, tilts, deformations of the oxygen-transition metal element octahedra help explain many of these phenomena. Another key player is the orbital degree of freedom of the d-ion. It may lead to a quantum entanglement of the materials electronic wavefunctions which promotes topological states in low dimensional geometries. In this report we present a study of select topological properties at surfaces or heterostructure interfaces of a subset of these perovskites when the orientation of the structure is along the (001) or (111) direction. In contrast to the extensively studied classes of topological insulators, topology in these systems is a characteristic property of the conducting regime, thus endowing the compounds with potential spintronic and quantum computing functionalities. We conclude this communication with a personal tribute to Gérard Toulouse (in French).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.190
Keywords: Materials Science, Theory, Perovskites, Interfaces, Topology, Spintronic
Mot clés : Science des matériaux, Théorie, Perovskites, Interfaces, Topologie, Spintronique

Marc Gabay 1

1 Laboratoire de Physique des Solides, Université Paris Saclay, CNRS UMR 8502, F-91405 Orsay Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_G1_303_0,
     author = {Marc Gabay},
     title = {Topological phases driven by orbital entanglement in {Transition} {Metal} {Oxide} {Perovskite} interfaces},
     journal = {Comptes Rendus. Physique},
     pages = {303--327},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.190},
     language = {en},
}
TY  - JOUR
AU  - Marc Gabay
TI  - Topological phases driven by orbital entanglement in Transition Metal Oxide Perovskite interfaces
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 303
EP  - 327
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.190
LA  - en
ID  - CRPHYS_2024__25_G1_303_0
ER  - 
%0 Journal Article
%A Marc Gabay
%T Topological phases driven by orbital entanglement in Transition Metal Oxide Perovskite interfaces
%J Comptes Rendus. Physique
%D 2024
%P 303-327
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.190
%G en
%F CRPHYS_2024__25_G1_303_0
Marc Gabay. Topological phases driven by orbital entanglement in Transition Metal Oxide Perovskite interfaces. Comptes Rendus. Physique, Volume 25 (2024), pp. 303-327. doi : 10.5802/crphys.190. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.190/

[1] A. Ohtomo; H. Y. Hwang A high-mobility electron gas at the LaAlO 3 /SrTiO 3 heterointerface, Nature, Volume 427 (2004) no. 6973, 157203, pp. 423-426 | DOI

[2] N. Reyren; S. Thiel; A. D. Caviglia et al. Superconducting Interfaces Between Insulating Oxides, Science, Volume 317 (2007) no. 5842, 015001, pp. 1196-1199 | DOI

[3] J. A. Bert; B. Kalisky; C. Bell; M. Kim; Y. Hikita; H. Y. Hwang; K. A. Moler Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO 3 /SrTiO 3 interface, Nat. Phys., Volume 7 (2011) no. 10, pp. 767-771 | DOI

[4] Lu Li; C. Richter; J. Mannhart; R. C. Ashoori Coexistence of magnetic order and two-dimensional superconductivity at LaAlO 3 /SrTiO 3 interfaces, Nat. Phys., Volume 7 (2011) no. 10, pp. 762-766 | DOI

[5] S. Banerjee; O. Erten; M. Randeria Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO 3 /SrTiO 3 interface, Nat. Phys., Volume 9 (2013), pp. 626-630 | DOI

[6] A. F. Santander-Syro; F. Fortuna; C. Bareille et al. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO 3 , Nature Mater., Volume 13 (2014) no. 12, 144407, pp. 1085-1090 | DOI

[7] S. McKeown Walker; S. Riccò; F. Y. Bruno et al. Absence of Giant Spin Splitting in the Two-Dimensional Electron Liquid at the Surface of SrTiO 3 (001), Phys. Rev. B, Volume 93 (2016) no. 24, 245143 | DOI

[8] T. Taniuchi; Y. Motoyui; K. Morozumi; T. C. Rödel; F. Fortuna; A. F. Santander-Syro; S. Shin Imaging of room-temperature ferromagnetic nano-domains at the surface of a non-magnetic oxide, Nat. Commun., Volume 7 (2016), 066601, pp. 11781-11786 | DOI

[9] A. D. Caviglia; M. Gabay; S. Gariglio; N. Reyren; C. Cancellieri; J.-M. Triscone Tunable Rashba Spin-Orbit Interaction at Oxide Interfaces, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126803 | DOI

[10] M. Ben Shalom; M. Sachs; D. Rakhmilevitch; A. Palevski; Y. Dagan Tuning Spin-Orbit Coupling and Superconductivity at the SrTiO 3 /LaAlO 3 Interface: A Magnetotransport Study, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126802 | DOI

[11] A. D. Caviglia; S. Gariglio; N. Reyren et al. Electric field control of the LaAlO 3 /SrTiO 3 interface ground state, Nature, Volume 456 (2008) no. 7222, pp. 624-627 | DOI

[12] J. Varignon; L. Vila; A. Barthélémy; M. Bibes A new spin for oxide interfaces, Nat. Phys., Volume 14 (2018) no. 4, 1800860, pp. 322-325 | DOI

[13] Y.-Y. Pai; A. Tylan-Tyler; P. Irvin; J. Levy Physics of SrTiO 3 -based heterostructures and nanostructures: a review, Rep. Prog. Phys., Volume 81 (2018) no. 3, 036503 | DOI

[14] A. Fert; F. Nguyen Van Dau Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators, C. R. Phys., Volume 20 (2019) no. 7, pp. 817-831 | DOI

[15] B. Förg; C. Richter; J. Mannhart Field-effect devices utilizing LaAlO 3 -SrTiO 3 interfaces, Appl. Phys. Lett., Volume 100 (2012) no. 5, 053506, 126802 | DOI

[16] R. Jany; C. Richter; C. Woltmann et al. Monolithically Integrated Circuits from Functional Oxides, Adv. Mater. Interfaces, Volume 1 (2014) no. 1, 1300031, 126803 | DOI

[17] D. G. Schlom; J. Mannhart Interface takes charge over Si, Nature Mater., Volume 10 (2011) no. 3, pp. 168-169 | DOI

[18] H. Boschker; J. Mannhart Quantum-Matter Heterostructures, Ann. Rev. Cond. Matter Phys., Volume 8 (2017) no. 1, pp. 145-164 | DOI

[19] T. C. Rödel; M. Vivek; F. Fortuna et al. Two-dimensional electron systems in ATiO 3 perovskites (A=Ca, Ba, Sr): Control of orbital hybridization and energy order, Phys. Rev. B, Volume 96 (2017), 041121, 115143 | DOI

[20] P. Zubko; S. Gariglio; M. Gabay; P. Ghosez; J.-M. Triscone Interface Physics in Complex Oxide Heterostructures, Ann. Rev. Cond. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI

[21] D. Stornaiuolo; C. Cantoni; G. M. De Luca et al. Tunable spin polarization and superconductivity in engineered oxide interfaces, Nature Mater., Volume 15 (2016) no. 3, pp. 278-8283 | DOI

[22] J. Bréhin; Y. Chen; M. D’Antuono et al. Coexistence and coupling of ferroelectricity and magnetism in an oxide two-dimensional electron gas, Nat. Phys., Volume 19 (2023) no. 6, pp. 823-829 | DOI

[23] J. Mannhart; D. G. Schlom Oxide Interfaces — An Opportunity for Electronics, Science, Volume 327 (2010) no. 5973, 053506, pp. 1607-1611 | DOI

[24] M. Salluzzo Electronic Reconstruction at the Interface Between Band Insulating Oxides: The LaAlO 3 /SrTiO 3 System, Oxide Thin Films, Multilayers, and Nanocomposites (P. Mele; T. Endo; S. Arisawa; C. Li; T. Tsuchiya, eds.), Springer, 2015, 012501, pp. 181-211 | DOI

[25] S. Gariglio; M. Gabay; J.-M. Triscone Research Update: Conductivity and beyond at the LaAlO 3 /SrTiO 3 interface, APL Mater., Volume 4 (2016), 060701 | DOI

[26] V. N. Strocov; C. Cancellieri; A. S. Mishchenko Electrons and polarons at oxide interfaces explored by soft-X-ray ARPES, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (C. Cancellieri; V. N. Strocov, eds.) (Springer Series in Materials Science), Volume 266, Springer, 2018, 195137, pp. 107-151 | DOI

[27] G. Herranz Orbital Symmetry and Electronic Properties of Two-Dimensional Electron Systems in Oxide Heterointerfaces, Oxide Spintronics (T. Banerjee, ed.), Jenny Stanford Publishing, 2019, 060701 | DOI

[28] V. N. Strocov; A. Chikina; M. Caputo et al. Electronic phase separation at LaAlO 3 /SrTiO 3 interfaces tunable by oxygen deficiency, Phys. Rev. Mater., Volume 3 (2019) no. 10, 106001, 2307474 | DOI

[29] R. Pentcheva; W. E. Pickett Electronic phenomena at complex oxide interfaces: insights from first principles, J. Phys. Cond. Matt., Volume 22 (2010) no. 4, 043001 | DOI

[30] P. García-Fernández; J. C. Wojdeł; J. Íñiguez; J. A Junquera Second-principles method for materials simulations including electron and lattice degrees of freedom, Phys. Rev. B, Volume 93 (2016) no. 19, 195137 | DOI

[31] O. Janson; Z. Zhong; G. Sangiovanni; K. Held Dynamical Mean Field Theory for Oxide Heterostructures, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (Claudia Cancellieri; Vladimir N. Strocov, eds.), Springer, 2018, 266802, pp. 215-243 | DOI

[32] A. E. M. Smink; J. C. de Boer; M. P. Stehno; A. Brinkman; W. G. van der Wiel; H. Hilgenkamp Gate-Tunable Band Structure of the LaAlO 3 -SrTiO 3 Interface, Phys. Rev. Lett., Volume 118 (2017) no. 10, 106401 | DOI

[33] F. Stern Self-Consistent Results for n-Type Si Inversion Layers, Phys. Rev. B, Volume 5 (1972) no. 12, 013275, pp. 4891-4899 | DOI

[34] T. C. Rödel; F. Fortuna; S. Sengupta et al. Universal Fabrication of 2D Electron Systems in Functional Oxides, Adv. Mater., Volume 28 (2016) no. 10, 1300031, pp. 1976-1980 | DOI

[35] E. Frantzeskakis; T. C. Rödel; F. Fortuna; A. F. Santander-Syro 2D surprises at the surface of 3D materials: Confined electron systems in transition metal oxides, J. Electron Spectrosc. Relat. Phenom., Volume 219 (2017), pp. 16-28 | DOI

[36] N. C. Plumb; M. Radović Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators, J. Phys. Cond. Matt., Volume 29 (2017), 433005, 041302 | DOI

[37] S. McKeown Walker; F. Y. Bruno; F. Baumberger ARPES Studies of Two-Dimensional Electron Gases at Transition Metal Oxide Surfaces, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (C. Cancellieri; V. N. Strocov, eds.) (Springer Series in Materials Science), Volume 266, Springer, 2018, 125121, pp. 55-85 | DOI

[38] S. Gariglio; A. D. Caviglia; J.-M. Triscone; M. Gabay A spin–orbit playground: surfaces and interfaces of transition metal oxides, Rep. Prog. Phys., Volume 82 (2018) no. 1, 012501, 3414 | DOI

[39] Z. Zhong; Q. Zhang; K. Held Quantum confinement in perovskite oxide heterostructures: Tight binding instead of a nearly free electron picture, Phys. Rev. B, Volume 88 (2013) no. 12, 125401, 036805 | DOI

[40] G. Khalsa; B. Lee; A. H. Macdonald Theory of t 2g electron-gas Rashba interactions, Phys. Rev. B, Volume 88 (2013), 041302 | DOI

[41] M. Vivek; M. O. Goerbig; M. Gabay Topological states at the (001) surface of SrTiO 3 , Phys. Rev. B, Volume 95 (2017), 165117 | DOI

[42] P. Bruneel; M. Gabay Spin texture driven spintronic enhancement at the LaAlO 3 /SrTiO 3 interface, Phys. Rev. B, Volume 102 (2020), 144407 | DOI

[43] Y. A. Bychkov; E. I. Rashba Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys., Volume 17 (1984) no. 33, pp. 6039-6045 | DOI

[44] V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Comm., Volume 73 (1990) no. 3, 1, pp. 233-235 | DOI

[45] F. Gallego; F. Trier; S. Mallik et al. All-Electrical Detection of the Spin-Charge Conversion in Nanodevices Based on SrTiO 3 2-D Electron Gases, Adv. Funct. Mater., Volume 34 (2024) no. 3, 2307474, 024515 | DOI

[46] X.-L. Qi; S.-C. Zhang Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1057-1110 | DOI

[47] B. A. Bernevig; T. L. Hughes Topological Insulators and Topological Superconductors, Princeton University Press, 2013 | DOI

[48] K. Park A Passage to Topological Matter: Colloquium, J. Korean Phys. Soc., Volume 73 (2018) no. 6, pp. 817-832 | DOI

[49] A. Haim; Y. Oreg Time-reversal-invariant topological superconductivity in one and two dimensions, Phys. Rep., Volume 825 (2019), 201102, pp. 1-48 | DOI

[50] Y. Ando Topological Insulators (2023) (preprint, arXiv:2307.14196) | DOI

[51] B. Yan; C. Felser Topological Materials: Weyl Semimetals, Ann. Rev. Cond. Matter Phys., Volume 8 (2017) no. 1, 177601, pp. 337-354 | DOI

[52] N. P. Armitage; E. J. Mele; A. Vishwanath Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., Volume 90 (2018) no. 1, 015001, 245143 | DOI

[53] B. A. Bernevig; T. L. Hughes; S.-C. Zhang Orbitronics: The Intrinsic Orbital Current in p-Doped Silicon, Phys. Rev. Lett., Volume 95 (2005) no. 6, 066601 | DOI

[54] B. A. Bernevig; T. L. Hughes; S.-C. Zhang Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, Volume 314 (2006) no. 5806, 041006, pp. 1757-1761 | DOI

[55] M. König; S. Wiedmann; C. Brüne et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science, Volume 318 (2007) no. 5851, pp. 766-770 | DOI

[56] Y. Tokura; M. Kawasaki; N. Nagaosa Emergent functions of quantum materials, Nat. Phys., Volume 13 (2017), 075427, pp. 1056-1068 | DOI

[57] L. Chen; H. Hu; M. G. Vergniory; J. Cano; Q. Si Dirac zeros in an orbital selective Mott phase: Green’s function Berry curvature and flux quantization (2024), 043001 (preprint, arXiv:2401.12156) | DOI

[58] G. Khalsa; A. H. MacDonald Theory of the SrTiO 3 surface state two-dimensional electron gas, Phys. Rev. B, Volume 86 (2012) no. 12, 125121, 433005 | DOI

[59] A. F. Santander-Syro; O. Copie; T. Kondo et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO 3 , Nature, Volume 469 (2011), 8944, p. 189-93 | DOI

[60] W. Meevasana; P. D. C. King; R. H. He et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO 3 surface, Nature Mater., Volume 10 (2011) no. 2, 036503, pp. 114-118 | DOI

[61] Z. Zhong; A. Tóth; K. Held Theory of spin-orbit coupling at LaAlO 3 /SrTiO 3 interfaces and SrTiO 3 surfaces, Phys. Rev. B, Volume 87 (2013) no. 16, 161102 | DOI

[62] D. C. Vaz; P. Noël; A. Johansson et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas, Nature Mater., Volume 18 (2019), 051002, pp. 1187–-1193 | DOI

[63] P. D. C. King; S. McKeown Walker; A. Tamai et al. Quasiparticle dynamics and spin-orbital texture of the SrTiO 3 two-dimensional electron gas, Nat. Commun., Volume 5 (2014) no. 1, 3414, 051002 | DOI

[64] M. Altmeyer; H. O. Jeschke; O. Hijano Cubelos et al. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO 3 , Phys. Rev. Lett., Volume 116 (2016) no. 15, 157203 | DOI

[65] E. Lesne; Y. Fu; S. Oyarzun et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nature Mater, Volume 15 (2016), 237002, pp. 1261-1266 | DOI

[66] F. Trier; P. Noël; J.-V. Kim; J.-P. Attané; L. Vila; M. Bibes Oxide spin-orbitronics: spin–charge interconversion and topological spin textures, Nat. Rev. Mater., Volume 7 (2022) no. 4, 100952, pp. 258-274 | DOI

[67] J. Sinova; S. O. Valenzuela; J. Wunderlich; C. H. Back; T. Jungwirth Spin Hall effects, Rev. Mod. Phys., Volume 87 (2015) no. 4, pp. 1213-1260 | DOI

[68] F. Trier; D. C. Vaz; P. Bruneel et al. Electric-Field Control of Spin Current Generation and Detection in Ferromagnet-Free SrTiO 3 -Based Nanodevices, Nano Lett., Volume 20 (2020) no. 1, 041121, pp. 395-401 | DOI

[69] A. Johansson; B. Göbel; J. Henk; M. Bibes; I. Mertig Spin and orbital Edelstein effects in a two-dimensional electron gas: Theory and application to SrTiO 3 interfaces, Phys. Rev. Res., Volume 3 (2021) no. 1, 013275 | DOI

[70] T. C. Rödel; C. Bareille; F. Fortuna et al. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO 3 (110) and (111) Surfaces, Phys. Rev. Applied, Volume 1 (2014) no. 5, 051002, 106001 | DOI

[71] S. McKeown Walker; A. de la Torre; F. Y. Bruno et al. Control of a Two-Dimensional Electron Gas on SrTiO 3 (111) by Atomic Oxygen, Phys. Rev. Lett., Volume 113 (2014), 177601 | DOI

[72] K. Song; S. Ryu; H. Lee et al. Direct imaging of the electron liquid at oxide interfaces, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 198-203 | DOI

[73] D. Xiao; W. Zhu; Y. Ran; N. Nagaosa; S. Okamoto Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun., Volume 2 (2011), 596, 106401 | DOI

[74] T. C. Rödel; C. Bareille; F. Fortuna et al. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO 3 (110) and (111) Surfaces, Phys. Rev. Appl., Volume 1 (2014), 051002, 216806 | DOI

[75] S. Okamoto; D. Xiao Transition-Metal Oxide (111) Bilayers, J. Phys. Soc. Jpn., Volume 87 (2018) no. 4, 041006 | DOI

[76] F. Simon; M. O. Goerbig; M. Gabay Normal state quantum geometry and superconducting domes in (111) oxide interfaces (2023), 214512 (preprint, arXiv:2307.13993) | DOI

[77] G. M. De Luca; R. Di Capua; E. Di Gennaro et al. Symmetry breaking at the (111) interfaces of SrTiO 3 hosting a two-dimensional electron system, Phys. Rev. B, Volume 98 (2018) no. 11, 115143 | DOI

[78] A. Georges; L. de Medici; J. Mravlje Strong Correlations from Hund’s Coupling, Ann. Rev. Cond. Matter Phys., Volume 4 (2013) no. 1, pp. 137-178 | DOI

[79] O. Hijano Cubelos Hétérostructures supraconductrices et isolants topologiques, Ph. D. Thesis, Université Paris Saclay, Paris, France (2015) (https://theses.hal.science/tel-01288200/)

[80] A. M. R. V. L. Monteiro; M. Vivek; D. J. Groenendijk et al. Band inversion driven by electronic correlations at the (111) LaAlO 3 /SrTiO 3 interface, Phys. Rev. B, Volume 99 (2019) no. 20, 201102 | DOI

[81] U. Khanna; P. K. Rout; M. Mograbi et al. Symmetry and Correlation Effects on Band Structure Explain the Anomalous Transport Properties of (111) LaAlO 3 /SrTiO 3 , Phys. Rev. Lett., Volume 123 (2019) no. 3, 036805 | DOI

[82] P. Bruneel Electronic and spintronic properties of the interfaces between transition metal oxides. Chapter 2, Ph. D. Thesis, Université Paris-Saclay, Paris, France (2020) (https://theses.hal.science/tel-03015119/)

[83] I. Sodemann; L. Fu Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett., Volume 115 (2015) no. 21, 216806, 146301 | DOI

[84] E. Lesne; Y. G. Sağlam; R. Battilomo et al. Designing spin and orbital sources of Berry curvature at oxide interfaces, Nature Mater., Volume 22 (2023) no. 5, pp. 576-582 | DOI

[85] M. T. Mercaldo; C. Noce; A. D. Caviglia; M. Cuoco; C. Ortix Orbital design of Berry curvature: pinch points and giant dipoles induced by crystal fields, npj Quantum Mater., Volume 8 (2023) no. 1, p. 12 | DOI

[86] E. Lesne; Y. G. Sağlam; M. Kounalakis; M. Gabay; G. A. Steele; A. D. Caviglia Microwave spectroscopy of two-dimensional superconductivity at LaAlO 3 /SrTiO 3 (111) interfaces, APS March Meeting 2021, Volume 66 (2021), 1

[87] A. Pezo; D. García Ovalle; A. Manchon Orbital Hall physics in two-dimensional Dirac materials, Phys. Rev. B, Volume 108 (2023) no. 7, 075427 | DOI

[88] G. Tuvia; A. Burshtein; I. Silber; A. Aharony; O. Entin-Wohlman; M. Goldstein; Y. Dagan Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO 3 /SrTiO 3 Interface, Phys. Rev. Lett., Volume 132 (2024) no. 14, 146301 | DOI

[89] P. He; S. McKeown Walker; S. S.-L. Zhang et al. Observation of Out-of-Plane Spin Texture in a SrTiO 3 (111) Two-Dimensional Electron Gas, Phys. Rev. Lett., Volume 120 (2018) no. 26, 266802 | DOI

[90] F. Y. Bruno; S. McKeown Walker; S. Riccò et al. Band Structure and Spin-Orbital Texture of the (111)-KTaO 3 Two-Dimensional Electron Gas, Adv. Electron. Mater. (2019), 1800860, 165117 | DOI

[91] F. Simon; M. Gabay; M. O. Goerbig; L. Pagot Role of the Berry curvature on BCS-type superconductivity in two-dimensional materials, Phys. Rev. B, Volume 106 (2022) no. 21, 214512 | DOI

[92] S. Peotta; P. Törmä Superfluidity in topologically nontrivial flat bands, Nat. Commun., Volume 6 (2015) no. 1, 8944 | DOI

[93] E. Rossi Quantum metric and correlated states in two-dimensional systems, Curr. Opin. Solid State Mater. Sci., Volume 25 (2021) no. 5, 100952, 596 | DOI

[94] P. Törmä; S. Peotta; B. A. Bernevig Superconductivity, superfluidity and quantum geometry in twisted multilayer systems, Nat. Rev. Phys., Volume 4 (2022) no. 8, pp. 528-542 | DOI

[95] L. Liang; T. I. Vanhala; S. Peotta; T. Siro; A. Harju; P. Törmä Band geometry, Berry curvature, and superfluid weight, Phys. Rev. B, Volume 95 (2017) no. 2, 024515 | DOI

[96] H. Tian; X. Gao; Y. Zhang et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry, Nature, Volume 614 (2023) no. 7948, 161102, pp. 440-444 | DOI

[97] P. K. Rout; E. Maniv; Y. Dagan Link between the Superconducting Dome and Spin-Orbit Interaction in the (111) LaAlO 3 /SrTiO 3 Interface, Phys. Rev. Lett., Volume 119 (2017) no. 23, 237002, 125401 | DOI

Cité par Sources :

Commentaires - Politique