[Déplacement de paroi magnétique par transfert de spin]
Par transfert de moment cinétique, un courant polarisé en spin peut exercer un couple sur lʼaimantation dʼun nano-aimant. Cette découverte permet de contrôler la direction dʼune aimantation par simple injection de courant, sans lʼaide dʼun champ magnétique extérieur. Le transfert de spin peut être utilisé pour induire des renversements ou des oscillations dʼaimantation, ou encore pour contrôler la position dʼune paroi magnétique. Dans cette revue, nous nous concentrerons sur ce dernier mécanisme, qui est aujourdʼhui le sujet dʼintenses recherches. En effet, non seulement ses origines microscopiques sont encore sujettes à débat, mais de plus de très prometteuses applications aux mémoires magnétiques non-volatiles sont en jeu.
The discovery that a spin polarized current can exert a large torque on a ferromagnet through a transfusion of spin angular momentum, offers a new way to control a magnetization by simple current injection, without the help of an applied external field. Spin transfer can be used to induce magnetization reversals and oscillations, or to control the position of a magnetic domain wall. In this review, we focus on this last mechanism, which is today the subject of an extensive research, both because the microscopic details for its origin are still debated, but also because promising applications are at stake for non-volatile magnetic memories.
Accepté le :
Publié le :
Julie Grollier 1 ; A. Chanthbouala 1 ; R. Matsumoto 1 ; A. Anane 1 ; V. Cros 1 ; F. Nguyen van Dau 1 ; Albert Fert 1
@article{CRPHYS_2011__12_3_309_0, author = {Julie Grollier and A. Chanthbouala and R. Matsumoto and A. Anane and V. Cros and F. Nguyen van Dau and Albert Fert}, title = {Magnetic domain wall motion by spin transfer}, journal = {Comptes Rendus. Physique}, pages = {309--317}, publisher = {Elsevier}, volume = {12}, number = {3}, year = {2011}, doi = {10.1016/j.crhy.2011.03.007}, language = {en}, }
TY - JOUR AU - Julie Grollier AU - A. Chanthbouala AU - R. Matsumoto AU - A. Anane AU - V. Cros AU - F. Nguyen van Dau AU - Albert Fert TI - Magnetic domain wall motion by spin transfer JO - Comptes Rendus. Physique PY - 2011 SP - 309 EP - 317 VL - 12 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.03.007 LA - en ID - CRPHYS_2011__12_3_309_0 ER -
%0 Journal Article %A Julie Grollier %A A. Chanthbouala %A R. Matsumoto %A A. Anane %A V. Cros %A F. Nguyen van Dau %A Albert Fert %T Magnetic domain wall motion by spin transfer %J Comptes Rendus. Physique %D 2011 %P 309-317 %V 12 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.03.007 %G en %F CRPHYS_2011__12_3_309_0
Julie Grollier; A. Chanthbouala; R. Matsumoto; A. Anane; V. Cros; F. Nguyen van Dau; Albert Fert. Magnetic domain wall motion by spin transfer. Comptes Rendus. Physique, Volume 12 (2011) no. 3, pp. 309-317. doi : 10.1016/j.crhy.2011.03.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.007/
[1] Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996), pp. 9353-9358
[2] Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996), p. L1-L7
[3] Spin-transfer torque and dynamics (B. Hillebrands; A. Thiaville, eds.), Topics in Applied Physics, Spin Dynamics in Confined Magnetic Structures III, vol. 101, Springer, 2006, pp. 225-308
[4] et al. Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett., Volume 80 (1998), p. 4281
[5] et al. Current-induced switching of domains in magnetic multilayer devices, Science, Volume 285 (1999), p. 867
[6] et al. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett., Volume 84 (2000), p. 3149
[7] et al. Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001), p. 3663
[8] et al. Spin transfer torque: a new method to excite or reverse a magnetization, C. R. Physique, Volume 6 (2005), p. 956
[9] et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires, Phys. Rev. Lett., Volume 98 (2007), p. 037204
[10] et al. High domain wall velocity at zero magnetic field induced by low current densities in spin valve nanostripes, Appl. Phys. Exp., Volume 2 (2009), p. 023003
[11] et al. Current-induced motion and pinning of domain walls in spin-valve nanowires studied by XMCD–PEEM, Phys. Rev. B, Volume 81 (2010), p. 224418
[12] Low field magnetoresistance and domain drag in ferromagnets, J. Appl. Phys., Volume 49 (1978), p. 2156
[13] Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films, J. Appl. Phys., Volume 55 (1984), p. 1954
[14] Exchange interaction between electric current and magnetic domain wall containing Bloch lines, J. Appl. Phys., Volume 63 (1988), p. 1663
[15] Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films, J. Appl. Phys., Volume 57 (1985), p. 1266
[16] Exchange forces between domain wall and electric current in permalloy films of variable thickness, J. Appl. Phys., Volume 63 (1988), p. 4276
[17] Observation of a current-induced force on Bloch lines in Ni–Fe thin films, J. Appl. Phys., Volume 67 (1990), p. 5941
[18] et al. Switching the magnetic configuration of a spin valve by current-induced domain wall motion, J. Appl. Phys., Volume 92 (2002), p. 4825
[19] et al. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures, Appl. Phys. Lett., Volume 83 (2003), pp. 105-107
[20] et al. Switching a spin valve back and forth by current-induced domain wall motion, Appl. Phys. Lett., Volume 83 (2003), p. 509
[21] et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., Volume 61 (1988), p. 2472
[22] Domain wall motion by spin-polarized current: a micromagnetic study, J. Appl. Phys., Volume 95 (2004), p. 7049
[23] Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett., Volume 93 (2004), p. 127204
[24] Micromagnetic understanding of current-driven domain wall motion in patterned nanowires, Europhys. Lett., Volume 69 (2005), p. 990
[25] Theory of current-driven domain wall motion: Spin transfer versus momentum transfer, Phys. Rev. Lett., Volume 92 (2004), p. 086601
[26] Spin-transfer torque for continuously variable magnetization, Phys. Rev. B, Volume 73 (2006), p. 054428
[27] Microscopic calculation of spin torques in disordered ferromagnets, J. Phys. Soc. Jpn., Volume 75 (2006), p. 113706
[28] Current-induced magnetization dynamics in disordered itinerant ferromagnets, Phys. Rev. B, Volume 74 (2006), p. 144405
[29] Nonadiabatic spin-transfer torque in real materials, Phys. Rev. B, Volume 79 (2009), p. 104416
[30] et al. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses, Phys. Rev. Lett., Volume 98 (2007), p. 187202
[31] et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length, Nature, Volume 447 (2006), p. 197
[32] et al. Dynamics of domain wall depinning driven by a combination of direct and pulsed currents, Appl. Phys. Lett., Volume 92 (2008), p. 162503
[33] et al. Dependence of domain-wall depinning threshold current on pinning profile, Phys. Rev. Lett., Volume 102 (2009), p. 127203
[34] et al. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls, Phys. Rev. Lett., Volume 101 (2008), p. 216601
[35] et al. Domain wall spin torquemeter, Phys. Rev. Lett., Volume 102 (2009), p. 137202
[36] et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nature Mater., Volume 9 (2010), p. 230
[37] Magnetic domain walls displacement: automotion vs. spin-transfer torque, Phys. Rev. B, Volume 82 (2010), p. 214414
[38] et al. Non-adiabatic spin-torques in narrow magnetic domain walls, Nature Physics, Volume 6 (2009), p. 19
[39] et al. Non-adiabatic spin torque investigated using thermally activated magnetic domain wall dynamics, Phys. Rev. Lett., Volume 105 (2010), p. 056601
[40] Magnetic domain-wall racetrack memory, Science, Volume 320 (2008), pp. 190-194
[41] Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nature Mater., Volume 3 (2004), pp. 868-871
[42] et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nature Mater., Volume 3 (2004), pp. 862-867
[43] V. Cros, J. Grollier, M. Munoz Sanchez, A. Fert, F. Nguyen van Dau, Spintronic device with control by domain wall displacement induced by a current of spin polarized carriers, Patent FR 2004/04-13338, WO 2006/06 4022 A1, US2009/0273421 A1, 2004.
[44] S. Fukami, et al., Low-current perpendicular domain wall motion cell for scalable high-speed MRAM, in: VLSI Technology, 2009 Symposium on, Honolulu, HI, 2009, pp. 230–231.
[45] The missing memristor found, Nature, Volume 453 (2008), p. 80
[46] Memristor – The missing circuit element, IEEE Trans. Circuit Theory, Volume 18 (1971), p. 507
[47] et al. Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nano., Volume 3 (2008), p. 429
[48] et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires, Phys. Rev. Lett., Volume 92 (2004), p. 077205
[49] Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As, Phys. Rev. Lett., Volume 96 (2006), p. 096601
[50] Spintronic memristor through spin-torque-induced magnetization motion, IEEE Electron Device Letters, Volume 30 (2009), p. 294
[51] J. Grollier, V. Cros, F. Nguyen van Dau, Memristor device with resistance adjustable by moving a magnetic wall by spin transfer and use of said memristor in a neural network, Patent WO/2010/125181, 2010.
[52] Currents, torques, and polarization factors in magnetic tunnel junctions, Phys. Rev. B, Volume 71 (2005), p. 024411
[53] Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett., Volume 97 (2006), p. 237205
[54] et al. Domain wall creation in nanostructures driven by a spin-polarized current, Phys. Rev. Lett., Volume 96 (2006), p. 186604
[55] Dynamics of a trapped domain wall in a spin-valve nanostructure with current perpendicular to the plane, Phys. Rev. B, Volume 74 (2006), p. 014412
[56] Demonstration of multilevel cell spin transfer switching in MgO magnetic tunnel junctions, Appl. Phys. Lett., Volume 93 (2008), p. 242502
[57] et al. Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire, Phys. Rev. Lett., Volume 104 (2010), p. 097203
[58] et al. High domain wall velocities due to spin currents perpendicular to the plane, Phys. Rev. Lett., Volume 102 (2009), p. 067206
[59] Anatomy of spin-transfer torque, Phys. Rev. B, Volume 66 (2002), p. 014407
[60] Spin torques in ferromagnetic/normal-metal structures, Phys. Rev. B, Volume 65 (2002), p. 220401(R)
[61] et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions, Nature Physics, Volume 4 (2007), pp. 67-71
[62] et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions, Nature Physics, Volume 4 (2007), pp. 37-41
[63] et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions, Nature Physics, Volume 5 (2009), pp. 898-902
[64] Influence of asymmetry on bias behavior of spin torque, Phys. Rev. B, Volume 81 (2010), p. 054437
[65] A. Chathbouala, et al., Vertical current induced domain wall motion in MgO based magnetci tunnel junctions with low current densities, Nature Physics (2011), in press.
Cité par Sources :
Commentaires - Politique