Comptes Rendus
Physics / Solids, fluids: magnetic and electrical properties
Magnetic domain wall motion by spin transfer
[Déplacement de paroi magnétique par transfert de spin]
Comptes Rendus. Physique, Volume 12 (2011) no. 3, pp. 309-317.

Par transfert de moment cinétique, un courant polarisé en spin peut exercer un couple sur lʼaimantation dʼun nano-aimant. Cette découverte permet de contrôler la direction dʼune aimantation par simple injection de courant, sans lʼaide dʼun champ magnétique extérieur. Le transfert de spin peut être utilisé pour induire des renversements ou des oscillations dʼaimantation, ou encore pour contrôler la position dʼune paroi magnétique. Dans cette revue, nous nous concentrerons sur ce dernier mécanisme, qui est aujourdʼhui le sujet dʼintenses recherches. En effet, non seulement ses origines microscopiques sont encore sujettes à débat, mais de plus de très prometteuses applications aux mémoires magnétiques non-volatiles sont en jeu.

The discovery that a spin polarized current can exert a large torque on a ferromagnet through a transfusion of spin angular momentum, offers a new way to control a magnetization by simple current injection, without the help of an applied external field. Spin transfer can be used to induce magnetization reversals and oscillations, or to control the position of a magnetic domain wall. In this review, we focus on this last mechanism, which is today the subject of an extensive research, both because the microscopic details for its origin are still debated, but also because promising applications are at stake for non-volatile magnetic memories.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2011.03.007
Mots clés : Spintronics, Magnetism, Domain wall, Spin transfer

Julie Grollier 1 ; A. Chanthbouala 1 ; R. Matsumoto 1 ; A. Anane 1 ; V. Cros 1 ; F. Nguyen van Dau 1 ; Albert Fert 1

1 Unité mixte de Physique CNRS/Thales and Université Paris Sud 11, 1, avenue A. Fresnel, 91767 Palaiseau, France
@article{CRPHYS_2011__12_3_309_0,
     author = {Julie Grollier and A. Chanthbouala and R. Matsumoto and A. Anane and V. Cros and F. Nguyen van Dau and Albert Fert},
     title = {Magnetic domain wall motion by spin transfer},
     journal = {Comptes Rendus. Physique},
     pages = {309--317},
     publisher = {Elsevier},
     volume = {12},
     number = {3},
     year = {2011},
     doi = {10.1016/j.crhy.2011.03.007},
     language = {en},
}
TY  - JOUR
AU  - Julie Grollier
AU  - A. Chanthbouala
AU  - R. Matsumoto
AU  - A. Anane
AU  - V. Cros
AU  - F. Nguyen van Dau
AU  - Albert Fert
TI  - Magnetic domain wall motion by spin transfer
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 309
EP  - 317
VL  - 12
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.03.007
LA  - en
ID  - CRPHYS_2011__12_3_309_0
ER  - 
%0 Journal Article
%A Julie Grollier
%A A. Chanthbouala
%A R. Matsumoto
%A A. Anane
%A V. Cros
%A F. Nguyen van Dau
%A Albert Fert
%T Magnetic domain wall motion by spin transfer
%J Comptes Rendus. Physique
%D 2011
%P 309-317
%V 12
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.03.007
%G en
%F CRPHYS_2011__12_3_309_0
Julie Grollier; A. Chanthbouala; R. Matsumoto; A. Anane; V. Cros; F. Nguyen van Dau; Albert Fert. Magnetic domain wall motion by spin transfer. Comptes Rendus. Physique, Volume 12 (2011) no. 3, pp. 309-317. doi : 10.1016/j.crhy.2011.03.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.007/

[1] L. Berger Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996), pp. 9353-9358

[2] J.C. Slonczewski Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996), p. L1-L7

[3] M.D. Stiles; J. Miltat Spin-transfer torque and dynamics (B. Hillebrands; A. Thiaville, eds.), Topics in Applied Physics, Spin Dynamics in Confined Magnetic Structures III, vol. 101, Springer, 2006, pp. 225-308

[4] M. Tsoi et al. Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett., Volume 80 (1998), p. 4281

[5] E.B. Myers et al. Current-induced switching of domains in magnetic multilayer devices, Science, Volume 285 (1999), p. 867

[6] J.A. Katine et al. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett., Volume 84 (2000), p. 3149

[7] J. Grollier et al. Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001), p. 3663

[8] V. Cros et al. Spin transfer torque: a new method to excite or reverse a magnetization, C. R. Physique, Volume 6 (2005), p. 956

[9] M. Hayashi et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires, Phys. Rev. Lett., Volume 98 (2007), p. 037204

[10] S. Pizzini et al. High domain wall velocity at zero magnetic field induced by low current densities in spin valve nanostripes, Appl. Phys. Exp., Volume 2 (2009), p. 023003

[11] V. Uhlir et al. Current-induced motion and pinning of domain walls in spin-valve nanowires studied by XMCD–PEEM, Phys. Rev. B, Volume 81 (2010), p. 224418

[12] L. Berger Low field magnetoresistance and domain drag in ferromagnets, J. Appl. Phys., Volume 49 (1978), p. 2156

[13] L. Berger Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films, J. Appl. Phys., Volume 55 (1984), p. 1954

[14] L. Berger Exchange interaction between electric current and magnetic domain wall containing Bloch lines, J. Appl. Phys., Volume 63 (1988), p. 1663

[15] P.P. Freitas; L. Berger Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films, J. Appl. Phys., Volume 57 (1985), p. 1266

[16] C.-Y. Hung; L. Berger Exchange forces between domain wall and electric current in permalloy films of variable thickness, J. Appl. Phys., Volume 63 (1988), p. 4276

[17] C.-Y. Hung; L. Berger; C.Y. Shih Observation of a current-induced force on Bloch lines in Ni–Fe thin films, J. Appl. Phys., Volume 67 (1990), p. 5941

[18] J. Grollier et al. Switching the magnetic configuration of a spin valve by current-induced domain wall motion, J. Appl. Phys., Volume 92 (2002), p. 4825

[19] M. Klaui et al. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures, Appl. Phys. Lett., Volume 83 (2003), pp. 105-107

[20] J. Grollier et al. Switching a spin valve back and forth by current-induced domain wall motion, Appl. Phys. Lett., Volume 83 (2003), p. 509

[21] M.N. Baibich et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., Volume 61 (1988), p. 2472

[22] A. Thiaville; Y. Nakatani; J. Miltat; N. Vernier Domain wall motion by spin-polarized current: a micromagnetic study, J. Appl. Phys., Volume 95 (2004), p. 7049

[23] S. Zhang; L. Li Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett., Volume 93 (2004), p. 127204

[24] A. Thiaville; Y. Nakatani; J. Miltat; Y. Suzuki Micromagnetic understanding of current-driven domain wall motion in patterned nanowires, Europhys. Lett., Volume 69 (2005), p. 990

[25] G. Tatara; H. Kohno Theory of current-driven domain wall motion: Spin transfer versus momentum transfer, Phys. Rev. Lett., Volume 92 (2004), p. 086601

[26] J. Xiao; A. Zangwill; M.D. Stiles Spin-transfer torque for continuously variable magnetization, Phys. Rev. B, Volume 73 (2006), p. 054428

[27] H. Kohno; G. Tatara; J. Shibata Microscopic calculation of spin torques in disordered ferromagnets, J. Phys. Soc. Jpn., Volume 75 (2006), p. 113706

[28] Y. Tserkovnyak; H.J. Skadsem; A. Braatas; G.E.W. Bauer Current-induced magnetization dynamics in disordered itinerant ferromagnets, Phys. Rev. B, Volume 74 (2006), p. 144405

[29] I. Garate; K. Gilmore; M.D. Stiles; A.H. MacDonald Nonadiabatic spin-transfer torque in real materials, Phys. Rev. B, Volume 79 (2009), p. 104416

[30] G. Meier et al. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses, Phys. Rev. Lett., Volume 98 (2007), p. 187202

[31] L. Thomas et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length, Nature, Volume 447 (2006), p. 197

[32] M. Hayashi et al. Dynamics of domain wall depinning driven by a combination of direct and pulsed currents, Appl. Phys. Lett., Volume 92 (2008), p. 162503

[33] S. Lepadatu et al. Dependence of domain-wall depinning threshold current on pinning profile, Phys. Rev. Lett., Volume 102 (2009), p. 127203

[34] O. Boulle et al. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls, Phys. Rev. Lett., Volume 101 (2008), p. 216601

[35] I.M. Miron et al. Domain wall spin torquemeter, Phys. Rev. Lett., Volume 102 (2009), p. 137202

[36] I.M. Miron et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nature Mater., Volume 9 (2010), p. 230

[37] J.-Y. Chauleau; R. Weil; A. Thiaville; J. Miltat Magnetic domain walls displacement: automotion vs. spin-transfer torque, Phys. Rev. B, Volume 82 (2010), p. 214414

[38] C. Burrowes et al. Non-adiabatic spin-torques in narrow magnetic domain walls, Nature Physics, Volume 6 (2009), p. 19

[39] M. Eltschka et al. Non-adiabatic spin torque investigated using thermally activated magnetic domain wall dynamics, Phys. Rev. Lett., Volume 105 (2010), p. 056601

[40] S.S.P. Parkin; M. Hayashi; L. Thomas Magnetic domain-wall racetrack memory, Science, Volume 320 (2008), pp. 190-194

[41] S. Yuasa; T. Nagahama; A. Fukushima; Y. Suzuki; K. Ando Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nature Mater., Volume 3 (2004), pp. 868-871

[42] S.S.P. Parkin et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nature Mater., Volume 3 (2004), pp. 862-867

[43] V. Cros, J. Grollier, M. Munoz Sanchez, A. Fert, F. Nguyen van Dau, Spintronic device with control by domain wall displacement induced by a current of spin polarized carriers, Patent FR 2004/04-13338, WO 2006/06 4022 A1, US2009/0273421 A1, 2004.

[44] S. Fukami, et al., Low-current perpendicular domain wall motion cell for scalable high-speed MRAM, in: VLSI Technology, 2009 Symposium on, Honolulu, HI, 2009, pp. 230–231.

[45] D.B. Strukov; G.S. Snider; D.R. Stewart; R.S. Williams The missing memristor found, Nature, Volume 453 (2008), p. 80

[46] L.O. Chua Memristor – The missing circuit element, IEEE Trans. Circuit Theory, Volume 18 (1971), p. 507

[47] J.J. Yang et al. Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nano., Volume 3 (2008), p. 429

[48] A. Yamaguchi et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires, Phys. Rev. Lett., Volume 92 (2004), p. 077205

[49] M. Yamanouchi; D. Chiba; F. Matsukura; T. Dietl; H. Ohno Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As, Phys. Rev. Lett., Volume 96 (2006), p. 096601

[50] X. Wang; Y. Chen; H. Xi; H. Li; D. Dimitrov Spintronic memristor through spin-torque-induced magnetization motion, IEEE Electron Device Letters, Volume 30 (2009), p. 294

[51] J. Grollier, V. Cros, F. Nguyen van Dau, Memristor device with resistance adjustable by moving a magnetic wall by spin transfer and use of said memristor in a neural network, Patent WO/2010/125181, 2010.

[52] J.C. Slonczewski Currents, torques, and polarization factors in magnetic tunnel junctions, Phys. Rev. B, Volume 71 (2005), p. 024411

[53] I. Theodonis; N. Kioussis; A. Kalitsov; M. Chshiev; W.H. Butler Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett., Volume 97 (2006), p. 237205

[54] D. Ravelosona et al. Domain wall creation in nanostructures driven by a spin-polarized current, Phys. Rev. Lett., Volume 96 (2006), p. 186604

[55] A. Rebei; O. Mryasov Dynamics of a trapped domain wall in a spin-valve nanostructure with current perpendicular to the plane, Phys. Rev. B, Volume 74 (2006), p. 014412

[56] X. Lou; Z. Gao; D.V. Dimitrov; M.X. Tang Demonstration of multilevel cell spin transfer switching in MgO magnetic tunnel junctions, Appl. Phys. Lett., Volume 93 (2008), p. 242502

[57] C.T. Boone et al. Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire, Phys. Rev. Lett., Volume 104 (2010), p. 097203

[58] K.V. Khvalkovskiy et al. High domain wall velocities due to spin currents perpendicular to the plane, Phys. Rev. Lett., Volume 102 (2009), p. 067206

[59] M.D. Stiles; A. Zangwill Anatomy of spin-transfer torque, Phys. Rev. B, Volume 66 (2002), p. 014407

[60] K. Xia; P.J. Kelly; G.E.W. Bauer; A. Brataas; I. Turek Spin torques in ferromagnetic/normal-metal structures, Phys. Rev. B, Volume 65 (2002), p. 220401(R)

[61] J.C. Sankey et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions, Nature Physics, Volume 4 (2007), pp. 67-71

[62] H. Kubota et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions, Nature Physics, Volume 4 (2007), pp. 37-41

[63] S.-C. Oh et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions, Nature Physics, Volume 5 (2009), pp. 898-902

[64] Y.-H. Tang; N. Kioussis; A. Kalitsov; W.H. Butler; R. Car Influence of asymmetry on bias behavior of spin torque, Phys. Rev. B, Volume 81 (2010), p. 054437

[65] A. Chathbouala, et al., Vertical current induced domain wall motion in MgO based magnetci tunnel junctions with low current densities, Nature Physics (2011), in press.

Cité par Sources :

Commentaires - Politique