Comptes Rendus
Science in the making 2: From 1940 to the early 1980s / La science en mouvement 2 : de 1940 aux premières années 1980
Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators
[La spintronique, de la magnétorésistance géante aux skyrmions magnétiques et isolants topologiques]
Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 817-831.

Cet article se veut une présentation générale de la spintronique. C'est aujourd'hui un important domaine de recherche, qui se développe sur de nombreux nouveaux axes de la physique de la matière condensée. Nous avons voulu présenter simplement les phénomènes physiques impliqués dans la spintronique – sans équations, mais avec de nombreux schémas. Nous décrivons aussi les applications de la spintronique, celles d'aujourd'hui et celles dont l'on attend un impact important sur les prochains développements des technologies de l'information et de la communication.

This article aims at giving a general presentation of spintronics, an important field of research developing today along many new directions in physics of condensed matter. We tried to present simply the physical phenomena involved in spintronics – no equations but many schematics. We also described the applications of spintronics, those of today and those expected to have an important impact on the next developments of the information and communication technologies.

Publié le :
DOI : 10.1016/j.crhy.2019.05.020
Keywords: Spintronics, Nano-magnetism, Topological physics, Technologies of information and communication
Mot clés : Spintronique, Nano-magnétisme, Physique topologique, Technologies de l'information et de la communication

Albert Fert 1 ; Frédéric Nguyen Van Dau 1

1 Unité mixte de physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France
@article{CRPHYS_2019__20_7-8_817_0,
     author = {Albert Fert and Fr\'ed\'eric Nguyen Van Dau},
     title = {Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators},
     journal = {Comptes Rendus. Physique},
     pages = {817--831},
     publisher = {Elsevier},
     volume = {20},
     number = {7-8},
     year = {2019},
     doi = {10.1016/j.crhy.2019.05.020},
     language = {en},
}
TY  - JOUR
AU  - Albert Fert
AU  - Frédéric Nguyen Van Dau
TI  - Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 817
EP  - 831
VL  - 20
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.05.020
LA  - en
ID  - CRPHYS_2019__20_7-8_817_0
ER  - 
%0 Journal Article
%A Albert Fert
%A Frédéric Nguyen Van Dau
%T Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators
%J Comptes Rendus. Physique
%D 2019
%P 817-831
%V 20
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2019.05.020
%G en
%F CRPHYS_2019__20_7-8_817_0
Albert Fert; Frédéric Nguyen Van Dau. Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 817-831. doi : 10.1016/j.crhy.2019.05.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.020/

[1] M.N. Baibich et al. Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices, Phys. Rev. Lett., Volume 61 (1988) no. 21, pp. 2472-2475

[2] G. Binasch; P. Grünberg; F. Saurenbach; W. Zinn Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, Volume 39 (1989) no. 7, pp. 4828-4830

[3] N.F. Mott The electrical conductivity of transition metals, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 153 (1936) no. 880, pp. 699-717

[4] A. Fert; I.A. Campbell Two-current conduction in nickel, Phys. Rev. Lett., Volume 21 (1968) no. 16, pp. 1190-1192

[5] A. Fert; I.A. Campbell Transport properties of ferromagnetic transition metals, J. Phys., Colloq., Volume 32 (1971) no. C1, p. C1-46–C1-50

[6] A. Fert; I.A. Campbell Electrical resistivity of ferromagnetic nickel and iron based alloys, J. Phys. F, Met. Phys., Volume 6 (1976) no. 5, pp. 849-871

[7] B. Loegel; F. Gautier Origine de la résistivité dans le cobalt et ses alliages dilués, J. Phys. Chem. Solids, Volume 32 (1971) no. 12, pp. 2723-2735

[8] J.W.F. Dorleijn; A.R. Miedema The residual resistivities of dilute iron-based alloys in the two-current model, J. Phys. F, Met. Phys., Volume 7 (1977) no. 1, p. L23-L25

[9] I.A. Campbell; A. Fert Chapter 9 Transport properties of ferromagnets, Handb. Ferromagn. Mater., Volume 3 (1982), pp. 747-804

[10] P. Grünberg; R. Schreiber; Y. Pang; M.B. Brodsky; H. Sowers Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, Phys. Rev. Lett., Volume 57 (1986) no. 19, pp. 2442-2445

[11] R.E. Camley; J. Barnaś Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling, Phys. Rev. Lett., Volume 63 (1989) no. 6, pp. 664-667

[12] P.M. Levy; S. Zhang; A. Fert Electrical conductivity of magnetic multilayered structures, Phys. Rev. Lett., Volume 65 (1990) no. 13, pp. 1643-1646

[13] S.S.P. Parkin; N. More; K.P. Roche Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr, Phys. Rev. Lett., Volume 64 (1990) no. 19, pp. 2304-2307

[14] T. Shinjo; H. Yamamoto Large magnetoresistance of field-induced giant ferrimagnetic multilayers, J. Phys. Soc. Jpn., Volume 59 (1990) no. 9, pp. 3061-3064

[15] C. Dupas et al. Very large magnetoresistance effects induced by antiparallel magnetization in two ultrathin cobalt films, J. Appl. Phys., Volume 67 (1990) no. 9, pp. 5680-5682

[16] D.H. Mosca; F. Petroff; A. Fert; P.A. Schroeder; W.P. Pratt; R. Laloee Oscillatory interlayer coupling and giant magnetoresistance in Co/Cu multilayers, J. Magn. Magn. Mater., Volume 94 (1991) no. 1–2, p. L1-L5

[17] S.S.P. Parkin; R. Bhadra; K.P. Roche Oscillatory magnetic exchange coupling through thin copper layers, Phys. Rev. Lett., Volume 66 (1991) no. 16, pp. 2152-2155

[18] B. Dieny; V.S. Speriosu; S.S.P. Parkin; B.A. Gurney; D.R. Wilhoit; D. Mauri Giant magnetoresistive in soft ferromagnetic multilayers, Phys. Rev. B, Volume 43 (1991) no. 1, pp. 1297-1300

[19] P. Grünberg, Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components, US Patent No. US4949039A, 1989.

[20] S. Parkin Applications of magnetic nanostructures (S. Maekawa; T. Shinjō, eds.), Spin Dependent Transport in Magnetic Nanostructures, Taylor & Francis, 2002, pp. 237-279

[21] C. Chappert; A. Fert; F.N. Van Dau The emergence of spin electronics in data storage, Nat. Mater., Volume 6 (2007) no. 11, pp. 813-823

[22] P.P. Freitas et al. Magnetoresistive biochips, Europhys. News, Volume 34 (2003) no. 6, pp. 224-226

[23] W.P. Pratt; S.-F. Lee; J.M. Slaughter; R. Loloee; P.A. Schroeder; J. Bass Perpendicular giant magnetoresistances of Ag/Co multilayers, Phys. Rev. Lett., Volume 66 (1991) no. 23, pp. 3060-3063

[24] L. Piraux et al. Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett., Volume 65 (1994) no. 19, pp. 2484-2486

[25] T. Valet; A. Fert Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B, Volume 48 (1993) no. 10, pp. 7099-7113

[26] A. Fert; H. Jaffrès Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor, Phys. Rev. B, Volume 64 (2001) no. 18

[27] M. Johnson; R.H. Silsbee Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system, Phys. Rev. B, Volume 35 (1987) no. 10, pp. 4959-4972

[28] Z.G. Yu; M.E. Flatté Electric-field-dependent spin diffusion and spin injection into semiconductors, Phys. Rev. B, Volume 66 (2002) no. 20

[29] T. Kimura; J. Hamrle; Y. Otani Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures, Phys. Rev. B, Volume 72 (2005) no. 1

[30] S. Takahashi; S. Maekawa Spin current in metals and superconductors, J. Phys. Soc. Jpn., Volume 77 (2008) no. 3

[31] M. Julliere Tunneling between ferromagnetic films, Phys. Lett. A, Volume 54 (1975) no. 3, pp. 225-226

[32] S. Maekawa; U. Gafvert Electron tunneling between ferromagnetic films, IEEE Trans. Magn., Volume 18 (1982) no. 2, pp. 707-708

[33] J.S. Moodera; L.R. Kinder; T.M. Wong; R. Meservey Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., Volume 74 (1995) no. 16, pp. 3273-3276

[34] T. Miyazaki; N. Tezuka Giant magnetic tunneling effect in Fe/Al2O3/Fe junction, J. Magn. Magn. Mater., Volume 139 (1995) no. 3, p. L231-L234

[35] M. Bowen et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001), Appl. Phys. Lett., Volume 79 (2001) no. 11, pp. 1655-1657

[36] S. Yuasa; T. Nagahama; A. Fukushima; Y. Suzuki; K. Ando Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater., Volume 3 (2004) no. 12, pp. 868-871

[37] S.S.P. Parkin et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers, Nat. Mater., Volume 3 (2004) no. 12, pp. 862-867

[38] S. Ikeda et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature, Appl. Phys. Lett., Volume 93 (2008) no. 8

[39] I.I. Oleinik; E.Y. Tsymbal; D.G. Pettifor Structural and electronic properties of Co/Al2O3/Co magnetic tunnel junction from first principles, Phys. Rev. B, Volume 62 (2000) no. 6, pp. 3952-3959

[40] J. Mathon; A. Umerski Theory of tunneling magnetoresistance in a junction with a nonmagnetic metallic interlayer, Phys. Rev. B, Volume 60 (1999) no. 2, pp. 1117-1121

[41] P. Mavropoulos; N. Papanikolaou; P.H. Dederichs Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions, Phys. Rev. Lett., Volume 85 (2000) no. 5, pp. 1088-1091

[42] X.-G. Zhang; W.H. Butler Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions, Phys. Rev. B, Volume 70 (2004) no. 17

[43] J.M. De De Teresa; A. Barthelemy; A. Fert; J.-P. Contour; F. Montaigne; P. Seneor Role of metal–oxide interface in determining the spin polarization of magnetic tunnel junctions, Science, Volume 286 (1999) no. 5439, pp. 507-509

[44] M. Bowen, et al., Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments, 2002.

[45] T. Ishikawa et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier, Appl. Phys. Lett., Volume 89 (2006) no. 19

[46] P. LeClair; J.K. Ha; H.J.M. Swagten; J.T. Kohlhepp; C.H. van de Vin; W.J.M. de Jonge Large magnetoresistance using hybrid spin filter devices, Appl. Phys. Lett., Volume 80 (2002) no. 4, pp. 625-627

[47] E.E. Fullerton; J.R. Childress Spintronics, magnetoresistive heads, and the emergence of the digital world, Proc. IEEE, Volume 104 (2016) no. 10, pp. 1787-1795

[48] A.V. Pohm; J.S.T. Huang; J.M. Daughton; D.R. Krahn; V. Mehra The design of a one megabit non-volatile M-R memory chip using 1.5 × 5-μm cells, IEEE Trans. Magn., Volume 24 (1988) no. 6, pp. 3117-3119

[49] J.M. Daughton Magnetoresistive memory technology, Thin Solid Films, Volume 216 (1992) no. 1, pp. 162-168

[50] M. Bibes; A. Barthelemy Oxide spintronics, IEEE Trans. Electron Devices, Volume 54 (2007) no. 5, pp. 1003-1023

[51] J. Varignon; L. Vila; A. Barthélémy; M. Bibes A new spin for oxide interfaces, Nat. Phys., Volume 14 (2018) no. 4, pp. 322-325

[52] J.C. Slonczewski Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996) no. 1–2, p. L1-L7

[53] L. Berger Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996) no. 13, pp. 9353-9358

[54] M. Tsoi et al. Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett., Volume 80 (1998) no. 19, pp. 4281-4284

[55] W. Rippard; M. Pufall; S. Kaka; S. Russek; T. Silva Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts, Phys. Rev. Lett., Volume 92 (2004) no. 2

[56] F.J. Albert; J.A. Katine; R.A. Buhrman; D.C. Ralph Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3809-3811

[57] J. Grollier et al. Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001) no. 23, pp. 3663-3665

[58] A. Dussaux et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions, Nat. Commun., Volume 1 (2010) no. 1, pp. 1-6

[59] J. Grollier et al. Switching a spin valve back and forth by current-induced domain wall motion, Appl. Phys. Lett., Volume 83 (2003) no. 3, pp. 509-511

[60] M. Hosomi et al. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram, IEEE InternationalElectron Devices Meeting, IEDM Technical Digest., 2005, pp. 459-462

[61] Everspin ships first ST-MRAM memory with 500× performance of flash | Computerworld https://www.computerworld.com/article/2493603/everspin-ships-first-st-mram-memory-with-500x-performance-of-flash.html ([Online]. Available:, Accessed 2019-3-5)

[62] Intel says FinFET-based embedded MRAM is production-ready | EE times https://www.eetimes.com/document.asp?doc_id=1334343# ([Online]. Available:, Accessed 2019-4-15)

[63] M. I. American Institute of Physics, V.I. Perel', JETP Lett., Volume 13 (1971)

[64] J.E. Hirsch Spin Hall effect, Phys. Rev. Lett., Volume 83 (1999) no. 9, pp. 1834-1837

[65] Y.K. Kato; R.C. Myers; A.C. Gossard; D.D. Awschalom Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913

[66] S.O. Valenzuela; M. Tinkham Direct electronic measurement of the spin Hall effect, Nature, Volume 442 (2006) no. 7099, pp. 176-179

[67] S.O. Valenzuela; M. Tinkham Electrical detection of spin currents: the spin-current-induced Hall effect (invited), J. Appl. Phys., Volume 101 (2007) no. 9

[68] M. Cubukcu et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction, Appl. Phys. Lett., Volume 104 (2014) no. 4

[69] A. Hoffmann Spin Hall effects in metals, IEEE Trans. Magn., Volume 49 (2013) no. 10, pp. 5172-5193

[70] J.-C. Rojas-Sánchez et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces, Phys. Rev. Lett., Volume 112 (2014) no. 10

[71] C.-F. Pai; L. Liu; Y. Li; H.W. Tseng; D.C. Ralph; R.A. Buhrman Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl. Phys. Lett., Volume 101 (2012) no. 12

[72] L. Liu; C.-F. Pai; Y. Li; H.W. Tseng; D.C. Ralph; R.A. Buhrman Spin-torque switching with the giant spin Hall effect of tantalum, Science, Volume 336 (2012) no. 6081, pp. 555-558

[73] C. Hahn; G. de Loubens; O. Klein; M. Viret; V.V. Naletov; J. Ben Youssef Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta, Phys. Rev. B, Volume 87 (2013) no. 17

[74] Y. Niimi et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys, Phys. Rev. Lett., Volume 109 (2012) no. 15

[75] A. Fert; A. Friederich; A. Hamzic Hall effect in dilute magnetic alloys, J. Magn. Magn. Mater., Volume 24 (1981) no. 3, pp. 231-257

[76] V.M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Commun., Volume 73 (1990) no. 3, pp. 233-235

[77] K. Kondou et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators, Nat. Phys., Volume 12 (2016) no. 11, pp. 1027-1031

[78] W. Han; Y. Otani; S. Maekawa Quantum materials for spin and charge conversion, NPJ Quantum Mater., Volume 3 (2018) no. 1, p. 27

[79] H.J. Zhang et al. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam, Sci. Rep., Volume 4 (2015) no. 1, p. 4844

[80] J.-C. Rojas-Sánchez et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films, Phys. Rev. Lett., Volume 116 (2016) no. 9

[81] Y. Shiomi et al. Spin-electricity conversion induced by spin injection into topological insulators, Phys. Rev. Lett., Volume 113 (2014) no. 19

[82] J.C.R. Sánchez et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials, Nat. Commun., Volume 4 (2013) no. 1, p. 2944

[83] E. Lesne et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nat. Mater., Volume 15 (2016) no. 12, pp. 1261-1266

[84] S. Manipatruni et al. Scalable energy-efficient magnetoelectric spin-orbit logic, Nature, Volume 565 (2019) no. 7737, pp. 35-42

[85] A.N. Bogdanov; U.K. Rößler Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett., Volume 87 (2001) no. 3

[86] R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics, Nat. Rev. Mater., Volume 1 (2016) no. 7

[87] A. Fert; N. Reyren; V. Cros Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater., Volume 2 (2017) no. 7

[88] K. Everschor-Sitte; J. Masell; R.M. Reeve; M. Kläui Perspective: magnetic skyrmions—overview of recent progress in an active research field, J. Appl. Phys., Volume 124 (2018) no. 24

[89] I. Dzyaloshinsky A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids, Volume 4 (1958) no. 4, pp. 241-255

[90] T. Moriya Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev., Volume 120 (1960) no. 1, pp. 91-98

[91] A. Fert; P.M. Levy Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett., Volume 44 (1980) no. 23, pp. 1538-1541

[92] A.R. Fert Magnetic and transport properties of metallic multilayers, Mater. Sci. Forum, Volume 59–60 (1991), pp. 439-480

[93] B. Dupé; M. Hoffmann; C. Paillard; S. Heinze Tailoring magnetic skyrmions in ultra-thin transition metal films, Nat. Commun., Volume 5 (2014) no. 1, p. 4030

[94] H. Yang; A. Thiaville; S. Rohart; A. Fert; M. Chshiev Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces, Phys. Rev. Lett., Volume 115 (2015) no. 26

[95] K. Di et al. Direct Observation of the Dzyaloshinskii–Moriya interaction in a Pt/Co/Ni Film, Phys. Rev. Lett., Volume 114 (2015) no. 4

[96] M. Belmeguenai et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy, Phys. Rev. B, Volume 91 (2015) no. 18

[97] U.K. Rößler; A.N. Bogdanov; C. Pfleiderer Spontaneous skyrmion ground states in magnetic metals, Nature, Volume 442 (2006) no. 7104, pp. 797-801

[98] S. Mühlbauer et al. Skyrmion lattice in a chiral magnet, Science, Volume 323 (2009) no. 5916, pp. 915-919

[99] X.Z. Yu et al. Real-space observation of a two-dimensional skyrmion crystal, Nature, Volume 465 (2010) no. 7300, pp. 901-904

[100] A. Kubetzka; M. Bode; O. Pietzsch; R. Wiesendanger Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips, Phys. Rev. Lett., Volume 88 (2002) no. 5

[101] S. Heinze et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., Volume 7 (2011) no. 9, pp. 713-718

[102] N. Romming; C. Hanneken; M. Menzel; J.E. Bickel; B. Wolter; K. von Bergmann Writing and deleting single magnetic skyrmions, Science, Volume 341 (2013) no. 6146, pp. 636-639

[103] J. Sampaio; V. Cros; S. Rohart; A. Thiaville; A. Fert Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol., Volume 8 (2013) no. 11, pp. 839-844

[104] C. Moreau-Luchaire et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol., Volume 11 (2016) no. 5, pp. 444-448

[105] A. Soumyanarayanan et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nat. Mater., Volume 16 (2017) no. 9, pp. 898-904

[106] S. Woo et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater., Volume 15 (2016) no. 5, pp. 501-506

[107] G. Yu et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Lett., Volume 16 (2016) no. 3, pp. 1981-1988

[108] L. Caretta et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet, Nat. Nanotechnol., Volume 13 (2018) no. 12, pp. 1154-1160

[109] W. Jiang et al. Magnetism. Blowing magnetic skyrmion bubbles, Science, Volume 349 (2015) no. 6245, pp. 283-286

[110] F. Büttner et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques, Nat. Nanotechnol., Volume 12 (2017) no. 11, pp. 1040-1044

[111] D. Maccariello et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 233-237

[112] A. Hrabec et al. Current-induced skyrmion generation and dynamics in symmetric bilayers, Nat. Commun., Volume 8 (2017)

[113] S. Parkin; S.-H. Yang Memory on the racetrack, Nat. Nanotechnol., Volume 10 (2015) no. 3, pp. 195-198

[114] R. Tomasello; E. Martinez; R. Zivieri; L. Torres; M. Carpentieri; G. Finocchio A strategy for the design of skyrmion racetrack memories, Sci. Rep., Volume 4 (2014) no. 1, p. 6784

[115] X. Zhang et al. Skyrmion–skyrmion and skyrmion–edge repulsions in skyrmion-based racetrack memory, Sci. Rep., Volume 5 (2015) no. 1, p. 7643

[116] W. Kang; Y. Huang; X. Zhang; Y. Zhou; W. Zhao Skyrmion-electronics: an overview and outlook, Proc. IEEE, Volume 104 (2016) no. 10, pp. 2040-2061

[117] X. Zhang; M. Ezawa; Y. Zhou Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Sci. Rep., Volume 5 (2015) no. 1, p. 9400

[118] F. Ma; Y. Zhou; H.B. Braun; W.S. Lew Skyrmion-based dynamic magnonic crystal, Nano Lett., Volume 15 (2015) no. 6, pp. 4029-4036

[119] G. Finocchio et al. Skyrmion based microwave detectors and harvesting, Appl. Phys. Lett., Volume 107 (2015) no. 26

[120] M. Romera et al. Vowel recognition with four coupled spin-torque nano-oscillators, Nature, Volume 563 (2018) no. 7730, pp. 230-234

[121] H. Kubota et al. Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions, Jpn. J. Appl. Phys., Volume 44 (2005) no. 40, p. L1237-L1240

[122] N. Romming; A. Kubetzka; C. Hanneken; K. von Bergmann; R. Wiesendanger Field-dependent size and shape of single magnetic skyrmions, Phys. Rev. Lett., Volume 114 (2015) no. 17

Cité par Sources :

Commentaires - Politique