Bien que prévu depuis plus de trente ans, le bruit quantique de pression de radiation nʼa jamais été mis en évidence expérimentalement. On sʼattend néanmoins à ce quʼil limite la sensibilité à basse fréquence des interféromètres gravitationnels de seconde génération. Nous avons mis en évidence des corrélations classiques induites par la pression de radiation entre deux faisceaux envoyés dans la même cavité de grande finesse dont un miroir est mobile. Notre dispositif à deux faisceaux permet de retrouver le bruit quantique même lorsque le bruit classique est prédominant, et a des applications dans les domaines des mesures de grande sensibilité et de lʼoptique quantique.
Quantum radiation pressure noise has never been experimentally demonstrated, though it has been predicted for more than thirty years. It is, however, expected to limit the low-frequency sensitivity of second generation gravitational-wave interferometers. We have demonstrated classical radiation-pressure-induced correlations between two optical beams sent into the same high-finesse cavity with a moving mirror. Our two-beam scheme can be used to retrieve quantum noise embedded in an overwhelming classical noise, and has applications both in high-sensitivity measurements and in quantum optics.
Accepté le :
Publié le :
Mots-clés : Bruit quantique, Pression de radiation, Bruit thérmique, Interféromètres gravitationnels
Pierre Verlot 1 ; Alexandros Tavernarakis 1 ; Chiara Molinelli 1 ; Aurélien Kuhn 1 ; Thomas Antoni 1 ; Slawomir Gras 1 ; Tristan Briant 1 ; Pierre-François Cohadon 1 ; Antoine Heidmann 1 ; Laurent Pinard 2 ; Christophe Michel 2 ; Raffaele Flaminio 2 ; Michaël Bahriz 1, 3 ; Olivier Le Traon 3 ; Izo Abram 4 ; Alexios Beveratos 4 ; Rémy Braive 4 ; Isabelle Sagnes 4 ; Isabelle Robert-Philip 4
@article{CRPHYS_2011__12_9-10_826_0, author = {Pierre Verlot and Alexandros Tavernarakis and Chiara Molinelli and Aur\'elien Kuhn and Thomas Antoni and Slawomir Gras and Tristan Briant and Pierre-Fran\c{c}ois Cohadon and Antoine Heidmann and Laurent Pinard and Christophe Michel and Raffaele Flaminio and Micha\"el Bahriz and Olivier Le Traon and Izo Abram and Alexios Beveratos and R\'emy Braive and Isabelle Sagnes and Isabelle Robert-Philip}, title = {Towards the experimental demonstration of quantum radiation pressure noise}, journal = {Comptes Rendus. Physique}, pages = {826--836}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.03.008}, language = {en}, }
TY - JOUR AU - Pierre Verlot AU - Alexandros Tavernarakis AU - Chiara Molinelli AU - Aurélien Kuhn AU - Thomas Antoni AU - Slawomir Gras AU - Tristan Briant AU - Pierre-François Cohadon AU - Antoine Heidmann AU - Laurent Pinard AU - Christophe Michel AU - Raffaele Flaminio AU - Michaël Bahriz AU - Olivier Le Traon AU - Izo Abram AU - Alexios Beveratos AU - Rémy Braive AU - Isabelle Sagnes AU - Isabelle Robert-Philip TI - Towards the experimental demonstration of quantum radiation pressure noise JO - Comptes Rendus. Physique PY - 2011 SP - 826 EP - 836 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.03.008 LA - en ID - CRPHYS_2011__12_9-10_826_0 ER -
%0 Journal Article %A Pierre Verlot %A Alexandros Tavernarakis %A Chiara Molinelli %A Aurélien Kuhn %A Thomas Antoni %A Slawomir Gras %A Tristan Briant %A Pierre-François Cohadon %A Antoine Heidmann %A Laurent Pinard %A Christophe Michel %A Raffaele Flaminio %A Michaël Bahriz %A Olivier Le Traon %A Izo Abram %A Alexios Beveratos %A Rémy Braive %A Isabelle Sagnes %A Isabelle Robert-Philip %T Towards the experimental demonstration of quantum radiation pressure noise %J Comptes Rendus. Physique %D 2011 %P 826-836 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.03.008 %G en %F CRPHYS_2011__12_9-10_826_0
Pierre Verlot; Alexandros Tavernarakis; Chiara Molinelli; Aurélien Kuhn; Thomas Antoni; Slawomir Gras; Tristan Briant; Pierre-François Cohadon; Antoine Heidmann; Laurent Pinard; Christophe Michel; Raffaele Flaminio; Michaël Bahriz; Olivier Le Traon; Izo Abram; Alexios Beveratos; Rémy Braive; Isabelle Sagnes; Isabelle Robert-Philip. Towards the experimental demonstration of quantum radiation pressure noise. Comptes Rendus. Physique, Nano- and micro-optomechanical systems, Volume 12 (2011) no. 9-10, pp. 826-836. doi : 10.1016/j.crhy.2011.03.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.03.008/
[1] Phys. Rev. D, 23 (1981), p. 1693
[2] Europhys. Lett., 13 (1990), p. 301
[3] et al. Nucl. Instrum. Meth. A, 289 (1990), p. 518
[4] et al. Science, 256 (1992), p. 325
[5] Proc. SPIE, 4856 (2003), p. 282
[6] Phys. Rev. Lett., 55 (1985), p. 2409
[7] Phys. Rev. Lett., 88 (2002), p. 231102
[8] et al. Phys. Rev. Lett., 100 (2008), p. 033602
[9] Europhys. Lett., 47 (1999), p. 545
[10] Phys. Rev. Lett., 83 (1999), p. 3174
[11] et al. Phys. Rev. A, 59 (1999), p. 1038
[12] et al. Phys. Rev. Lett., 97 (2006), p. 133601
[13] Nature (London), 444 (2006), p. 71
[14] et al. Nature (London), 444 (2006), p. 67
[15] et al. Phys. Rev. Lett., 99 (2007), p. 160801
[16] et al. Nature (London), 452 (2008), p. 72
[17] Nature Phys., 4 (2008), p. 415
[18] Nature (London), 424 (2003), p. 291
[19] Science, 304 (2004), p. 74
[20] et al. Nature, 464 (2010), p. 697
[21] Nature Phys., 4 (2008), p. 561
[22] http://gw.icrr.u-tokyo.ac.jp/gwadw2010/program/program.html#19-AM (For a review of the current experiments, see the slides of the dedicated session of the 2010 Gravitational-Wave Advanced Detector Workshop, available at)
[23] Appl. Phys. B, 64 (1997), p. 173
[24] Phys. Rev. Lett., 102 (2009), p. 103601
[25] et al. Phys. Rev. A, 82 (2010), p. 013818
[26] Nature (London), 430 (2004), p. 329
[27] Phys. Rev. Lett., 99 (2007), p. 110801
[28] Phys. Rev. Lett., 92 (2004), p. 161102
[29] Phys. Rev. A, 68 (2003), p. 033823
[30] Eur. Phys. J. D, 22 (2003), p. 131
[31] P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon, A. Heidmann, in preparation.
[32] Phys. Rev. Lett., 102 (2009), p. 243902
[33] M. Bahriz, et al., IEEE Conf. on Sensors, 2010, accepted for publication.
[34] Phys. Rev. A, 80 (2009), p. 021803
[35] et al. | arXiv
[36] et al. New J. Phys., 10 (2008), p. 095008
[37] et al. Appl. Phys. Lett., 86 (2005), p. 011116
[38] J. Micromech. Microeng., 17 (2007), p. 2231
[39] et al. Phys. Rev. A, 49 (1994), p. 1337
[40] Phys. Rev. A, 49 (1994), p. 1961
- Thermal intermodulation backaction in a high-cooperativity optomechanical system, Optica, Volume 10 (2023) no. 11, p. 1543 | DOI:10.1364/optica.500123
- Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction, Physical Review A, Volume 97 (2018) no. 3 | DOI:10.1103/physreva.97.033833
- Quantum correlations from a room-temperature optomechanical cavity, Science, Volume 356 (2017) no. 6344, p. 1265 | DOI:10.1126/science.aag1407
- Introduction, Classical Pendulum Feels Quantum Back-Action (2016), p. 1 | DOI:10.1007/978-4-431-55882-8_1
- Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics, Physical Review A, Volume 94 (2016) no. 1 | DOI:10.1103/physreva.94.013817
- Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots, Annalen der Physik, Volume 527 (2015) no. 1-2, p. 169 | DOI:10.1002/andp.201400090
- Suspended Mirrors: From Test Masses to Micromechanics, Cavity Optomechanics (2014), p. 57 | DOI:10.1007/978-3-642-55312-7_4
- Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing, Physical Review A, Volume 89 (2014) no. 3 | DOI:10.1103/physreva.89.033810
- Cavity optomechanics, Reviews of Modern Physics, Volume 86 (2014) no. 4, p. 1391 | DOI:10.1103/revmodphys.86.1391
- Strong Thermomechanical Squeezing via Weak Measurement, Physical Review Letters, Volume 110 (2013) no. 18 | DOI:10.1103/physrevlett.110.184301
- Observation of Radiation Pressure Shot Noise on a Macroscopic Object, Science, Volume 339 (2013) no. 6121, p. 801 | DOI:10.1126/science.1231282
Cité par 11 documents. Sources : Crossref
Commentaires - Politique