[De lʼInternet des objets à lʼInternet du monde réel]
De nos jours, on est confronté de manière banale à des technologies de communication sans fil. Cʼest souvent le fait de RFID (systèmes dʼidentification de radio fréquence) et de capteurs sans fils. Notre environnement et les objets qui nous entourent deviennent communicants. De nouvelles applications émergent dans des domaines aussi variés que la logistique, la santé, les sauvetages, la préservation de lʼenvironnement. Lʼincorporation de tels dispositifs dans des produits industriels pourrait conduire à un monde dans lequel les objets communiquent et interagissent entre eux et avec les humains, cʼest-à-dire « lʼInternet des objets ». Cet article décrit les différents types de RFID et les sujets brûlants de recherche et des exemples dʼapplications sont donnés.
Nowadays, we daily meet new wireless technologies. This is often achieved through the use of RFID (Radio Frequency IDentification) tags and wireless sensors. Our environment and surrounding objects become communicating. New applications thus arise in domains such as logistic, health, rescue and environment preservation. Embedding such devices in various industrial goods could lead to a world in which objects communicate and interact with other objects and with people, i.e. the so-called “Internet of things”. This article describes the various types of RFID tags, and the hot topic for research and some examples of applications are given.
Mot clés : Internet, Identification de radio fréquence
Nathalie Mitton 1 ; David Simplot-Ryl 1
@article{CRPHYS_2011__12_7_669_0, author = {Nathalie Mitton and David Simplot-Ryl}, title = {From the {Internet} of things to the {Internet} of the physical world}, journal = {Comptes Rendus. Physique}, pages = {669--674}, publisher = {Elsevier}, volume = {12}, number = {7}, year = {2011}, doi = {10.1016/j.crhy.2011.06.006}, language = {en}, }
Nathalie Mitton; David Simplot-Ryl. From the Internet of things to the Internet of the physical world. Comptes Rendus. Physique, Volume 12 (2011) no. 7, pp. 669-674. doi : 10.1016/j.crhy.2011.06.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.06.006/
[1] Internet of Things. Connecting Objects, Wiley and Sons, 2010
[2] Electronic product code global http://www.epcglobalinc.org
[3] A hybrid randomized protocol for RFID tag identification, Sensor Review, Volume 26 (2006) no. 2, pp. 147-154
[4] D. Engels, S. Sarma, The reader collision problem, in: Proc. of IEEE Int. Conference on Systems, Man and Cybernetics, 2002.
[5] M. Bolic, M. Latteux, D. Simplot-Ryl, Framed aloha based anti-collision protocol for rfid tags, in: Proc. SenseID, Australia, 2007.
[6] S. Birari, S. Iyer, Pulse: A mac protocol for RFID networks, in: Int. Workshop on RFID and Ubiquitous Sensor Networks (USN), Japan, 2005.
[7] K.-I. Hwang, K.T. Kim, D.-S. Eom, Dica: Distributed tag access with collision-avoidance among mobile RFID readers, in: Embedded and Ubiquitous Computing Workshops, Korea, 2006.
[8] S. Piramuthu, Anticollision algorithm for RFID tags, in: Proc. of National Conference on Mobile and Pervasive Computing (CoMPC), Chennai, 2008.
[9] J. Ho, D.W. Engels, S.E. Sarma, Hiq: a hierarchical Q-learning algorithm to solve the reader collision problem, in: Int. Symposium on Applications and the Internet Workshops (SAINT), USA, 2006.
[10] S. Jainand, S.R. Das, Collision avoidance in a dense RFID network, in: Proc. of the Third ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WiNTECH), San Francisco, USA, 2006, pp. 49–56.
[11] EPC Global Standard Specification, EPC TM radio-frequency identity protocols class-1 generation-2 UHF RFID protocol for communications at 860 MHz–960 MHz, version 1.2.0, 2007.
[12] ONS standards, 2008 http://www.epcglobalinc.org/standards/ons
[13] Long-term animal observation by wireless sensor networks with sound recognition, Wireless Algorithms, Systems, and Applications, Lecture Notes in Computer Science, vol. 5682, 2009, pp. 1-11
[14] Mastering hospital antimicrobial resistance, 2007 https://www.mosar-sic.org/mosar/en-GB/
[15] E. Elhafsi, N. Mitton, D. Simplot-Ryl, End-to-end energy efficient geographic path discovery with guaranteed delivery in adhoc and sensor networks, in: Proc. 19th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRCʼ08), Cannes, France, September 2008.
[16] N. Mitton, T. Razafindralambo, D. Simplot-Ryl, I. Stojmenovic, Hector is an energy efficient tree-based optimized routing protocol for wireless networks, in: Proc. Int. Conf. on Mobile Ad-Hoc and Sensor Networks (MSN 2008), Wuhan, China, December 2008.
[17] IEEE 802.11 Wireless Local Area Networks, Ieee 802.11, 1997 http://www.ieee802.org/11/
[18] IEEE 802.15 WPAN Task Group 4 (TG4), Ieee 802.15.4, 2006 http://www.ieee802.org/15/pub/TG4.html
[19] X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks, SenSysʼ06, ACM, New York, NY, USA (2006), pp. 307-320
[20] A. Gallais, J. Carle, Performance evaluation and enhancement of surface coverage relay protocol, in: Proc. IFIP Networkingʼ08, Singapore, 2008.
[21] Very large scale open wireless sensor network testbed http://www.senslab.info/
Cité par Sources :
Commentaires - Politique