[Un processus de prévision des risques pour les nanomatériaux et la nanofabrication]
Les nanomatériaux ont des propriétés nouvelles qui permettent de nouvelles applications depuis lʼélectronique moléculaire jusquʼà la production dʼénergie. La prise en compte de leur impact potentiel sur la santé humaine et lʼenvironnement nécessite des méthodes prédictives associées à leur emploi. Toutefois la très grande variété de ces nanomatériaux ne permet pas de traiter la question du risque au cas par cas. La prévision des risques, surtout pour un grand nombre de matériaux, est rendue compliquée par les incertitudes sur les quantités produites, les caractéristiques de ces matériaux et leur utilisation, les causes dʼexposition, et le manque de données concernant leurs effets sur les organismes et les écosystèmes. Actuellement, une évaluation du risque associé à lʼémergence des nanomatériaux manufacturés est donc impossible par des méthodes traditionnelles.
Une autre méthode, faisant appel à un processus évolutif semble plus appropriée pour analyser ces risques. Dans cet article, nous proposons quʼune telle méthode devrait inclure six ingrédients-clés : (1) la capacité à produire des prévisions associées à des niveaux dʼincertitude pour des questions à court terme ; (2) la capacité à évaluer les sources pertinentes de nanomatériaux ; (3) une approche systémique des impacts de lʼutilisation et de la production des nanomatériaux prenant en compte le cycle de vie, au delà des approches toxicologiques ; (4) la possibilité dʼactualiser les prévisions des risques dès que des informations nouvelles sont connues ; (5) un retour pour améliorer les connaissances ; (6) la capacité à fournir un retour dʼanalyse pour diminuer lʼimpact des nanomatériaux via lʼamélioration des procédés fabrication. Ce dernier point implique que le risque potentiel associé à un nanomatériau doit pouvoir être mis en relation avec ses propriétés, de telle sorte que telle ou telle de ses caractéristiques est un indicateur de risque. Ainsi le procédé dʼévaluation des risques nécessite de sʼintéresser à des questions à court terme relatives à des nanomatériaux déjà dans le commerce mais aussi à des problèmes sur le long terme qui requièrent une recherche de base et des avancées théoriques. Dans lʼarticle nous soulignerons et discuterons les besoins associés à chacun des six ingrédients-clés cités ci-dessus.
Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries.
In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span from urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features and discuss.
Mot clés : Evaluation des risques, Nanomatériaux, Cycle de vie, Réseau bayésien
Mark R. Wiesner 1, 2, 3 ; Jean-Yves Bottero 1, 4, 2, 3
@article{CRPHYS_2011__12_7_659_0, author = {Mark R. Wiesner and Jean-Yves Bottero}, title = {A risk forecasting process for nanostructured materials, and nanomanufacturing}, journal = {Comptes Rendus. Physique}, pages = {659--668}, publisher = {Elsevier}, volume = {12}, number = {7}, year = {2011}, doi = {10.1016/j.crhy.2011.06.008}, language = {en}, }
Mark R. Wiesner; Jean-Yves Bottero. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus. Physique, Volume 12 (2011) no. 7, pp. 659-668. doi : 10.1016/j.crhy.2011.06.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.06.008/
[1] Who is winning the global nanorace?, Nature Nanotechnology, Volume 1 (2006), pp. 81-83
[2] http://www.edf.org/documents/7287_Denison_Testimony_10312007.pdf
[3] et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environmental Science & Technology, Volume 43 (2009) no. 12, pp. 4227-4233
[4] et al. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air, Journal of Nanoparticle Research, Volume 6 (2004), pp. 241-251
[5] et al. Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams, Journal of Nanoscience and Nanotechnology, Volume 4 (2004) no. 7, pp. 716-718
[6] et al. Fullerenes in the cretaceous-tertiary boundary-layer, Science, Volume 265 (1994) no. 5172, pp. 645-647
[7] et al. Fullerenes in meteorites and the nature of planetary atmospheres (F.J.M. Rietmeijer, ed.), Natural Fullerenes and Related Structures of Elemental Carbon, Springer, Netherlands, 2006, pp. 95-121
[8] et al. Nanominerals, mineral nanoparticles, and Earth systems, Science, Volume 319 (2008), pp. 1631-1635
[9] et al. Thermodynamic analysis of resources used in manufacturing processes, Environmental Science & Technology, Volume 43 (2009) no. 5, pp. 1584-1590
[10] et al. Relative risk analysis of several manufactured nanomaterials: An insurance industry context, Environmental Science & Technology, Volume 39 (2005) no. 22, pp. 8985-8994
[11] Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment, Nanotechnology, Volume 19 (2008) no. 18, p. 14
[12] Analysis. A method for the correlation of biological activity and chemical structure, J. Am. Chem. Soc., Volume 86 (1964), pp. 1616-1626
[13] R. Zhang, A.J. Bivens, Comparing the use of Bayesian networks and neural networks in response time modeling for service-oriented systems, in: Proceedings of the 2007 Workshop on Service-Oriented Computing Performance: Aspects, Issues, and Approaches, 2007, pp. 67–74.
[14] Bayesian Networks and Decision Graphs (M. Jordan; J. Kleinberg; B. Schölkopf, eds.), Springer Science + Business Media, LLC, New York, NY, 2007
[15] et al. Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity, Langmuir, Volume 24 (2008), pp. 3215-3222
[16] et al. Nanomaterials as adsorbents (M.R. Wiesner; J.Y. Bottero, eds.), Environmental Nanotechnology – Applications and Impacts of Nanomaterials, McGraw-Hill, New York, 2007
[17] et al. Characterization of alumoxane-derived ceramic membranes, Journal of Membrane Science, Volume 176 (2000), pp. 1-9
[18] et al. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures, Environmental Science & Technology, Volume 39 (2005) no. 17, pp. 6343-6351
[19] et al. Nanoparticle transport, aggregation, and deposition (M.R. Wiesner; J.Y. Bottero, eds.), Environmental Nanotechnology, McGraw-Hill, New York, NY, 2007
[20] et al. Fullerol cluster formation in aqueous solutions: Implications for environmental release, Journal of Colloid and Interface Science (2007)
[21] et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry, Langmuir, Volume 22 (2006), pp. 3878-3885
[22] Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures, Environmental Science & Technology, Volume 39 (2005) no. 17, pp. 6343-6351
[23] Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems, Journal of Nanoparticle Research, Volume 7 (2005), pp. 545-553
[24] et al. Aqueous synthesis of water soluble alumoxanes: environmentally benign precursors to alumina and aluminum-based ceramics, Chemistry of Materials, Volume 9 (1997), pp. 2418-2433
[25] et al. Characteristics of ceramic membranes derived from alumoxane nanoparticles, Journal of Membrane Science, Volume 205 (2002), pp. 33-43
[26] et al. Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes, Journal of Membrane Science, Volume 227 (2003), pp. 207-217
[27] Controlling nanoparticle template morphology: effect of solvent chemistry, Colloid and Interface Science, Volume 283 (2005), pp. 366-372
[28] Reactive oxygen generation on nanoparticulate material (M.R. Wiesner; J.Y. Bottero, eds.), Environmental Nanotechnology, McGraw-Hill, New York, NY, 2007
[29] et al. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water, Environmental Science & Technology, Volume 42 (2008) no. 11, pp. 4175-4180
[30] Nanomaterials fabrication (M.R. Wiesner; J.Y. Bottero, eds.), Environmental Nanotechnology – Applications and Impacts of Nanomaterials, McGraw-Hill, New York, 2007
[31] Laboratory assessment of the mobility of nanomaterials in porous media, Environmental Science & Technology, Volume 38 (2004), pp. 5164-5169
[32] Velocity effects on fullerene and oxide nanoparticle deposition in porous media, Environmental Science & Technology, Volume 38 (2004) no. 16, pp. 4377-4382
[33] Fullerol-sensitized production of reactive oxygen species in aqueous solution, Environmental Science & Technology, Volume 39 (2005) no. 5, pp. 1359-1365
[34] et al. Synthesis and characterization of carboxylate-FeOOH nanoparticles (ferroxanes) and ferroxane-derived ceramics, Chemistry of Materials, Volume 14 (2002) no. 2, pp. 621-628
[35] et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Letters, Volume 6 (2006) no. 8, pp. 1794-1807
[36] Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. URSS, Volume 14 (1941), pp. 733-762
[37] Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948
[38] Green Chemistry. An Introductory Text, Royal Society of Chemistry, Cambridge, 2010
Cité par Sources :
Commentaires - Politique