[Détection linéaire des déplacements dʼun microrésonateur mécanique à lʼaide dʼun SQUID]
Les magnétomètres à base de SQUID (Superconducting QUantum Interference Device) sont sensibles à de très faibles variations de flux magnétique et sont ainsi utilisés pour lʼétude dʼeffets quantiques à lʼéchelle macroscopique. Nous avons réalisé une mesure linéaire du déplacement dʼun microrésonateur mécanique enchâssé dans la boucle supraconductrice dʼun dc SQUID. En utilisant un fort champ magnétique et un amplificateur fonctionnant en régime cryogénique, cette méthode de mesure nous a permis dʼatteindre une résolution qui nʼest que 4,4 fois la limite quantique.
Superconducting quantum interference devices (SQUIDs) can detect tiny amounts of magnetic flux and are also used to study macroscopic quantum effects. We employ a dc SQUID as a linear detector of the displacement of an embedded micromechanical resonator with a femtometer sensitivity. We discuss the measurement method, including operation in high magnetic field and a cryogenic amplification scheme which allows us to reach a resolution which is only a factor 4.4 above the standard quantum limit.
Accepté le :
Publié le :
Mot clés : NEMS, MEMS, QEMS, SQUID
Samir Etaki 1, 2 ; Menno Poot 1 ; Koji Onomitsu 2 ; Hiroshi Yamaguchi 2 ; Herre S.J. van der Zant 1
@article{CRPHYS_2011__12_9-10_817_0, author = {Samir Etaki and Menno Poot and Koji Onomitsu and Hiroshi Yamaguchi and Herre S.J. van der Zant}, title = {dc {SQUIDs} as linear displacement detectors for embedded micromechanical resonators}, journal = {Comptes Rendus. Physique}, pages = {817--825}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.10.005}, language = {en}, }
TY - JOUR AU - Samir Etaki AU - Menno Poot AU - Koji Onomitsu AU - Hiroshi Yamaguchi AU - Herre S.J. van der Zant TI - dc SQUIDs as linear displacement detectors for embedded micromechanical resonators JO - Comptes Rendus. Physique PY - 2011 SP - 817 EP - 825 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.10.005 LA - en ID - CRPHYS_2011__12_9-10_817_0 ER -
%0 Journal Article %A Samir Etaki %A Menno Poot %A Koji Onomitsu %A Hiroshi Yamaguchi %A Herre S.J. van der Zant %T dc SQUIDs as linear displacement detectors for embedded micromechanical resonators %J Comptes Rendus. Physique %D 2011 %P 817-825 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.10.005 %G en %F CRPHYS_2011__12_9-10_817_0
Samir Etaki; Menno Poot; Koji Onomitsu; Hiroshi Yamaguchi; Herre S.J. van der Zant. dc SQUIDs as linear displacement detectors for embedded micromechanical resonators. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 817-825. doi : 10.1016/j.crhy.2011.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.005/
[1] A megahertz nanomechanical resonator with room temperature quality factor over a million, Applied Physics Letters, Volume 92 (2008), p. 013112
[2] On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Reviews of Modern Physics, Volume 52 (1980) no. 2, pp. 341-392
[3] M. Poot, H. S. J. van der Zant, Mechanical systems in the quantum regime, Physics Reports (2011), in press, . | arXiv
[4] et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010) no. 7289, pp. 697-703
[5] Nanometre-scale displacement sensing using a single electron transistor, Nature, Volume 424 (2003) no. 6946, pp. 291-293
[6] Approaching the quantum limit of a nanomechanical resonator, Science, Volume 304 (2004) no. 5667, p. 74
[7] Intrinsic noise properties of atomic point contact displacement detectors, Physical Review Letters, Volume 98 (2007) no. 9, p. 96804
[8] Nanomechanical displacement sensing using a quantum point contact, Applied Physics Letters, Volume 81 (2002), p. 1699
[9] Near-field cavity optomechanics with nanomechanical oscillators, Nature Physics, Volume 5 (2009) no. 12, pp. 909-914
[10] Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nature Nanotechnology, Volume 4 (2009) no. 12, pp. 820-823
[11] The SQUID Handbook, Wiley-Vch, 2006
[12] Motion detection of a micromechanical resonator embedded in a dc SQUID, Nature Physics, Volume 4 (2008) no. 10, pp. 785-788
[13] Tunable backaction of a dc SQUID on an integrated micromechanical resonator, Physical Review Letters, Volume 105 (2010) no. 20, p. 207203
[14] Cooling a nanomechanical resonator with quantum back-action, Nature, Volume 443 (2006) no. 7108, pp. 193-196
[15] Quantum noise theory for the dc SQUID, Applied Physics Letters, Volume 38 (2009) no. 5, pp. 380-382
[16] Quantum analysis of a linear dc squid mechanical displacement detector, Physical Review B, Volume 76 (2007) no. 1, p. 014511 | DOI
[17] The Art of Electronics, Cambridge University Press, 2001
[18] A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nature Nanotechnology, Volume 3 (2008) no. 6, pp. 342-346
[19] Superconducting proximity effect in the native inversion layer on InAs, Physical Review Letters, Volume 54 (1985) no. 22, pp. 2449-2452
Cité par Sources :
Commentaires - Politique