[Optomécanique en cavité et refroidissement de nanorésonateurs mécaniques par couplage en champ proche à un microtore]
Les nanorésonateurs mécaniques sont au coeur de nombreuses mesures de précision. Nous avons obtenu un couplage dispersif par pression de radiation entre un nanorésonateur et le champ évanescent au voisinage dʼun microrésonateur en forme de toroïde. Le coefficient de couplage optomécanique atteint dans ce système une valeur supérieure à 200 MHz/nm, correspondant à un décalage supérieur à 4 kHz associé aux fluctuations quantiques de position du nanorésonateur. La caractérisation détaillée de ce couplage montre un bon accord entre lʼexpérience et les valeurs déterminées analytiquement ou par simulation par éléments finis. Nous montrons que la structure du mode mécanique du nanorésonateur peut être déterminée à partir de la seule observation de son mouvement brownien. De plus, nous avons observé que lʼinteraction par pression de radiation peut conduire à des oscillations cohérentes et auto-entretenues du nanorésonateur pour des puissances de lʼordre du nanowatt, et aussi à un refroidissement du nanorésonateur. Enfin, la possibilité de coupler le mouvement du nanorésonateur à deux modes optiques dont lʼespacement en fréquence correspond exactement à la fréquence de résonance mécanique est démontrée pour la première fois. Nous montrons que ce mécanisme de type Raman permet à la fois une amplification et un refroidissement du nanorésonateur.
Nanomechanical oscillators are at the heart of a variety of precision measurements. This article reports on dispersive radiation coupling of nanomechanical oscillators to the evanescent near-field of toroid optical microresonators. The optomechanical coupling coefficient which reaches values , corresponding to a vacuum optomechanical coupling rate , is characterized in detail and good agreement between experimental, analytical and finite element simulation based values is found. It is shown that both the mode-structure and -patterns of nanomechanical oscillators can be characterized relying solely on Brownian motion. Moreover, it is demonstrated that the radiation pressure interaction can cause self-sustained coherent nanomechanical oscillations at nano-Watt power levels as well as cooling of the nanomechanical oscillator. Finally, the feasibility of coupling nanomechanical motion to two optical modes where the optical mode spacing exactly equals the mechanical resonance frequency is demonstrated for the first time. As shown here, this Raman-type scheme allows both amplification and cooling.
Mot clés : Nanorésonateur mécanique, Mesure de précision
G. Anetsberger 1 ; E.M. Weig 2 ; J.P. Kotthaus 2 ; T.J. Kippenberg 1, 3
@article{CRPHYS_2011__12_9-10_800_0, author = {G. Anetsberger and E.M. Weig and J.P. Kotthaus and T.J. Kippenberg}, title = {Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling}, journal = {Comptes Rendus. Physique}, pages = {800--816}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.10.012}, language = {en}, }
TY - JOUR AU - G. Anetsberger AU - E.M. Weig AU - J.P. Kotthaus AU - T.J. Kippenberg TI - Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling JO - Comptes Rendus. Physique PY - 2011 SP - 800 EP - 816 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.10.012 LA - en ID - CRPHYS_2011__12_9-10_800_0 ER -
%0 Journal Article %A G. Anetsberger %A E.M. Weig %A J.P. Kotthaus %A T.J. Kippenberg %T Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling %J Comptes Rendus. Physique %D 2011 %P 800-816 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.10.012 %G en %F CRPHYS_2011__12_9-10_800_0
G. Anetsberger; E.M. Weig; J.P. Kotthaus; T.J. Kippenberg. Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 800-816. doi : 10.1016/j.crhy.2011.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.012/
[1] Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008), p. 1172
[2] Optomechanics Physics, 2 (2009), p. 40
[3] Optomechanics of deformable optical cavities, Nat. Phot., Volume 3 (2009), p. 40
[4] et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett., Volume 95 (2005), p. 033901
[5] et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., Volume 94 (2005), p. 223902
[6] S. Tallur, et al., Phase noise modeling of opto-mechanical oscillators, in: IEEE Frequency Control Symposium, 2010, pp. 268.
[7] et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nat. Nano., Volume 3 (2008), p. 342
[8] et al. Characterization of a radiation-pressure-driven micromechanical oscillator, Phys. Rev. A, Volume 74 (2006), p. 023813
[9] Investigation of dissipative ponderomotive effects of electromagnetic radiation, Sov. Phys. JETP, Volume 58 (1970), p. 1550
[10] et al. Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, Volume 444 (2006), p. 71
[11] et al. Self-cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), p. 67
[12] et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 97 (2006), p. 243905
[13] et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901
[14] et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902
[15] et al. Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys., Volume 4 (2008), p. 415
[16] et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), p. 72
[17] et al. Dynamical backaction of microwave fields on a nanomechanical oscillator, Phys. Rev. Lett., Volume 101 (2008), p. 197203
[18] et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature, Volume 460 (2009), p. 724
[19] Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nat. Phys., Volume 5 (2009), p. 489
[20] et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., Volume 5 (2009), p. 509
[21] et al. Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), p. 72
[22] et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), p. 697
[23] An atomic-resolution nanomechanical mass sensor, Nat. Nano., Volume 3 (2008), p. 533
[24] A nanometre-scale mechanical electrometer, Nature, Volume 392 (1998), p. 160
[25] et al. Single spin detection by magnetic resonance force microscopy, Nature, Volume 430 (2004), p. 329
[26] et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO, Phys. Lett. A, Volume 218 (1996), p. 157
[27] et al. High-sensitivity optical measurement of mechanical Brownian motion, Eur. Phys. Lett., Volume 47 (1999), p. 545
[28] et al. Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., Volume 5 (2009), p. 909
[29] et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit, Phys. Rev. A, Volume 82 (2010), p. 061804
[30] Nanometre-scale displacement sensing using a single electron transistor, Nature, Volume 424 (2003), p. 291
[31] et al. Approaching the quantum limit of a nanomechanical resonator, Science, Volume 304 (2004), p. 74
[32] et al. Cooling a nanomechanical resonator with quantum back-action, Nature, Volume 443 (2006), p. 193
[33] Intrinsic noise properties of atomic point contact displacement detectors, Phys. Rev. Lett., Volume 98 (2007), p. 096804
[34] Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys., Volume 4 (2008), p. 555
[35] et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID, Nat. Phys., Volume 4 (2008), p. 785
[36] et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, Volume 459 (2009), p. 550
[37] On the quantum-non-demolition measurement of the energy of optical quanta, Quantum Optics, Experimental Gravity, and Measurement Theory, Plenum Press, 1983
[38] Optical binding, Phys. Rev. Lett., Volume 63 (1989), p. 1233
[39] et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Opt. Expr., Volume 13 (2005), p. 8286
[40] et al. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials, Nat. Phot., Volume 1 (2007), p. 658
[41] et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces, Nat. Phot., Volume 1 (2007), p. 416
[42] Optical Trapping and Manipulation of Neutral Particles Using Lasers, World Scientific, Singapore, 2007
[43] Cooling of gases with laser radiation, Opt. Comm., Volume 13 (1975), p. 68
[44] Optomechanical device actuation through the optical gradient force, Nat. Phot., Volume 4 (2010), p. 211
[45] et al. Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nat. Nano., Volume 4 (2009), p. 820
[46] et al. Optomechanical crystals, Nature, Volume 462 (2010), p. 78
[47] et al. Harnessing optical forces in integrated photonic circuits, Nature, Volume 456 (2008), p. 480
[48] Parametric oscillatory instability in Fabry–Perot interferometer, Phys. Lett. A, Volume 287 (2001), p. 331
[49] Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995), p. 2537
[50] Cavity optomechanics with ultrahigh-Q crystalline microresonators, Phys. Rev. A, Volume 82 (2010), p. 031804
[51] et al. An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802
[52] et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys., Volume 5 (2009), p. 485
[53] et al. Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101
[54] et al. Ultralow-dissipation optomechanical resonators on a chip, Nat. Phot., Volume 2 (2008), p. 627
[55] et al. Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett., Volume 103 (2009), p. 103601
[56] et al. Fluctuating nanomechanical system in a high finesse optical microcavity, Opt. Expr., Volume 17 (2009), p. 12813
[57] Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides, Phys. Rev. Lett., Volume 103 (2009), p. 223901
[58] Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion, Phys. Rev. A, Volume 63 (2001), p. 023812
[59] Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, Volume 31 (1985), p. 3761
[60] et al. Optical bistability and mirror confinement induced by radiation pressure, Phys. Rev. Lett., Volume 51 (1983), p. 1550
[61] et al. Observation and characterization of an optical spring, Phys. Rev. A, Volume 69 (2004), p. 051801
[62] Geometrical theory of whispering-gallery modes, IEEE J. Quant. Electr., Volume 12 (2006), p. 33
[63] et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state, 2010 | arXiv
[64] LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design, J. Vac. Sci. Tech. A, Volume 14 (1996), p. 2879
[65] et al. High quality factor resonance at room temperature with nanostrings under high tensile stress, J. Appl. Phys., Volume 99 (2006), p. 124304
[66] et al. Optimization of a low-stress silicon nitride process for surface-micromachining applications, Sens. Act. A, Volume 58 (1997), p. 149
[67] et al. Refractive-index dispersion of phosphosilicate glass, thermal oxide, and silicon nitride films on silicon, Appl. Opt., Volume 27 (1988), p. 4104
[68] Optical properties of thin-film silicon-compatible materials, Appl. Opt., Volume 36 (1997), p. 5122
[69] Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett., Volume 85 (2004), p. 6113
[70] et al. Cavity optomechanics with stoichiometric SiN films, Phys. Rev. Lett., Volume 103 (2009), p. 207204
[71] et al. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light, Phys. Rev. Lett., Volume 99 (2007), p. 173603
[72] et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity, Phys. Rev. Lett., Volume 103 (2009), p. 027406
[73] et al. Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Expr., Volume 18 (2010), p. 23236
[74] Effective mass in quantum effects of radiation pressure, Eur. J. Phys. D, Volume 7 (1999), p. 107
[75] Vibration Problems Engineering, Wiley and Sons, 1990
[76] et al. Stress and silicon nitride: A crack in the universal dissipation of glasses, Phys. Rev. Lett., Volume 102 (2009), p. 225503
[77] Damping of nanomechanical resonators, Phys. Rev. Lett., Volume 105 (2010), p. 027205
[78] et al. Autoparametric optical drive for micromechanical oscillators, Appl. Phys. Lett., Volume 79 (2001), p. 695
[79] Back-action limit of linewidth in an optomechanical oscillator, Phys. Rev. A, Volume 78 (2008), p. 023832
[80] Quality-factor and nonlinear properties of optical whispering-gallery modes, Phys. Rev. A, Volume 137 (1989), p. 393
[81] Thermal nonlinear effects in optical whispering gallery microresonators, Las. Phys., Volume 2 (1992), p. 1004
[82] Dynamical thermal behavior and thermal self-stability of microcavities, Opt. Expr., Volume 12 (2004), p. 4742
[83] Low quantum noise tranquilizer for Fabry–Perot interferometer, Phys. Rev. A, Volume 293 (2002), p. 228
[84] Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer, Phys. Rev. Lett., Volume 104 (2010), p. 033901
[85] et al. Phonon laser action in a tunable two-level system, Phys. Rev. Lett., Volume 104 (2010), p. 083901
[86] et al. Observation of three-mode parametric interactions in long optical cavities, Phys. Rev. A, Volume 78 (2008), p. 023807
[87] et al. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres, Opt. Lett., Volume 20 (1995), p. 1835
[88] Rayleigh scattering in high-Q microspheres, JOSA B, Volume 17 (2000), p. 1051
[89] Modal coupling in traveling-wave resonators, Opt. Lett., Volume 27 (2002), p. 1669
[90] Fundamental thermal fluctuations in microspheres, JOSA B, Volume 21 (2004), p. 697
[91] et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators, New J. Phys., Volume 10 (2008), p. 095015
Cité par Sources :
Commentaires - Politique