Comptes Rendus
Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
[Optomécanique en cavité et refroidissement de nanorésonateurs mécaniques par couplage en champ proche à un microtore]
Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 800-816.

Les nanorésonateurs mécaniques sont au coeur de nombreuses mesures de précision. Nous avons obtenu un couplage dispersif par pression de radiation entre un nanorésonateur et le champ évanescent au voisinage dʼun microrésonateur en forme de toroïde. Le coefficient de couplage optomécanique atteint dans ce système une valeur supérieure à 200 MHz/nm, correspondant à un décalage supérieur à 4 kHz associé aux fluctuations quantiques de position du nanorésonateur. La caractérisation détaillée de ce couplage montre un bon accord entre lʼexpérience et les valeurs déterminées analytiquement ou par simulation par éléments finis. Nous montrons que la structure du mode mécanique du nanorésonateur peut être déterminée à partir de la seule observation de son mouvement brownien. De plus, nous avons observé que lʼinteraction par pression de radiation peut conduire à des oscillations cohérentes et auto-entretenues du nanorésonateur pour des puissances de lʼordre du nanowatt, et aussi à un refroidissement du nanorésonateur. Enfin, la possibilité de coupler le mouvement du nanorésonateur à deux modes optiques dont lʼespacement en fréquence correspond exactement à la fréquence de résonance mécanique est démontrée pour la première fois. Nous montrons que ce mécanisme de type Raman permet à la fois une amplification et un refroidissement du nanorésonateur.

Nanomechanical oscillators are at the heart of a variety of precision measurements. This article reports on dispersive radiation coupling of nanomechanical oscillators to the evanescent near-field of toroid optical microresonators. The optomechanical coupling coefficient which reaches values >200 MHz/nm, corresponding to a vacuum optomechanical coupling rate >4 kHz, is characterized in detail and good agreement between experimental, analytical and finite element simulation based values is found. It is shown that both the mode-structure and -patterns of nanomechanical oscillators can be characterized relying solely on Brownian motion. Moreover, it is demonstrated that the radiation pressure interaction can cause self-sustained coherent nanomechanical oscillations at nano-Watt power levels as well as cooling of the nanomechanical oscillator. Finally, the feasibility of coupling nanomechanical motion to two optical modes where the optical mode spacing exactly equals the mechanical resonance frequency is demonstrated for the first time. As shown here, this Raman-type scheme allows both amplification and cooling.

Publié le :
DOI : 10.1016/j.crhy.2011.10.012
Keywords: Nanomechanical oscillator, Precision measurement, Cavity optomechanics, Microresonator, Dynamical backaction, Radiation pressure cooling and amplication
Mot clés : Nanorésonateur mécanique, Mesure de précision

G. Anetsberger 1 ; E.M. Weig 2 ; J.P. Kotthaus 2 ; T.J. Kippenberg 1, 3

1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2 Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU), Geschwister-Scholl-Platz 1, 80539 München, Germany
3 École polytechnique fédérale de Lausanne, EPFL, Ch-1015 Lausanne, Switzerland
@article{CRPHYS_2011__12_9-10_800_0,
     author = {G. Anetsberger and E.M. Weig and J.P. Kotthaus and T.J. Kippenberg},
     title = {Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling},
     journal = {Comptes Rendus. Physique},
     pages = {800--816},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.10.012},
     language = {en},
}
TY  - JOUR
AU  - G. Anetsberger
AU  - E.M. Weig
AU  - J.P. Kotthaus
AU  - T.J. Kippenberg
TI  - Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 800
EP  - 816
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.10.012
LA  - en
ID  - CRPHYS_2011__12_9-10_800_0
ER  - 
%0 Journal Article
%A G. Anetsberger
%A E.M. Weig
%A J.P. Kotthaus
%A T.J. Kippenberg
%T Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling
%J Comptes Rendus. Physique
%D 2011
%P 800-816
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.10.012
%G en
%F CRPHYS_2011__12_9-10_800_0
G. Anetsberger; E.M. Weig; J.P. Kotthaus; T.J. Kippenberg. Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 800-816. doi : 10.1016/j.crhy.2011.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.012/

[1] T.J. Kippenberg; K.J. Vahala Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008), p. 1172

[2] F. Marquardt; S.M. Girvin Optomechanics Physics, 2 (2009), p. 40

[3] I. Favero; K. Karrai Optomechanics of deformable optical cavities, Nat. Phot., Volume 3 (2009), p. 40

[4] T.J. Kippenberg et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett., Volume 95 (2005), p. 033901

[5] T. Carmon et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., Volume 94 (2005), p. 223902

[6] S. Tallur, et al., Phase noise modeling of opto-mechanical oscillators, in: IEEE Frequency Control Symposium, 2010, pp. 268.

[7] X.L. Feng et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator, Nat. Nano., Volume 3 (2008), p. 342

[8] M. Hossein-Zadeh et al. Characterization of a radiation-pressure-driven micromechanical oscillator, Phys. Rev. A, Volume 74 (2006), p. 023813

[9] V.B. Braginskii; A.B. Manukin; M.Y. Tikhonov Investigation of dissipative ponderomotive effects of electromagnetic radiation, Sov. Phys. JETP, Volume 58 (1970), p. 1550

[10] O. Arcizet et al. Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, Volume 444 (2006), p. 71

[11] S. Gigan et al. Self-cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), p. 67

[12] A. Schliesser et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 97 (2006), p. 243905

[13] I. Wilson-Rae et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901

[14] F. Marquardt et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902

[15] A. Schliesser et al. Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys., Volume 4 (2008), p. 415

[16] J.D. Thompson et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), p. 72

[17] J.D. Teufel et al. Dynamical backaction of microwave fields on a nanomechanical oscillator, Phys. Rev. Lett., Volume 101 (2008), p. 197203

[18] S. Gröblacher et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature, Volume 460 (2009), p. 724

[19] Y.-S. Park; H. Wang Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nat. Phys., Volume 5 (2009), p. 489

[20] A. Schliesser et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., Volume 5 (2009), p. 509

[21] T. Rocheleau et al. Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), p. 72

[22] A.D. OʼConnell et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), p. 697

[23] K. Jensen; K. Kim; A. Zettl An atomic-resolution nanomechanical mass sensor, Nat. Nano., Volume 3 (2008), p. 533

[24] A. Cleland; M. Roukes A nanometre-scale mechanical electrometer, Nature, Volume 392 (1998), p. 160

[25] D. Rugar et al. Single spin detection by magnetic resonance force microscopy, Nature, Volume 430 (2004), p. 329

[26] A. Abramovici et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO, Phys. Lett. A, Volume 218 (1996), p. 157

[27] Y. Hadjar et al. High-sensitivity optical measurement of mechanical Brownian motion, Eur. Phys. Lett., Volume 47 (1999), p. 545

[28] G. Anetsberger et al. Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., Volume 5 (2009), p. 909

[29] G. Anetsberger et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit, Phys. Rev. A, Volume 82 (2010), p. 061804

[30] R.G. Knobel; A.N. Cleland Nanometre-scale displacement sensing using a single electron transistor, Nature, Volume 424 (2003), p. 291

[31] M.D. LaHaye et al. Approaching the quantum limit of a nanomechanical resonator, Science, Volume 304 (2004), p. 74

[32] A. Naik et al. Cooling a nanomechanical resonator with quantum back-action, Nature, Volume 443 (2006), p. 193

[33] N.E. Flowers-Jacobs; D.R. Schmidt; K.W. Lehnert Intrinsic noise properties of atomic point contact displacement detectors, Phys. Rev. Lett., Volume 98 (2007), p. 096804

[34] C.A. Regal; J.D. Teufel; K.W. Lehnert Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys., Volume 4 (2008), p. 555

[35] S. Etaki et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID, Nat. Phys., Volume 4 (2008), p. 785

[36] M. Eichenfield et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, Volume 459 (2009), p. 550

[37] V.B. Braginsky; S.P. Vyatchanin On the quantum-non-demolition measurement of the energy of optical quanta, Quantum Optics, Experimental Gravity, and Measurement Theory, Plenum Press, 1983

[38] M.M. Burns; J.-M. Fournier; J.A. Golovchenko Optical binding, Phys. Rev. Lett., Volume 63 (1989), p. 1233

[39] M. Povinelli et al. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Opt. Expr., Volume 13 (2005), p. 8286

[40] P.T. Rakich et al. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials, Nat. Phot., Volume 1 (2007), p. 658

[41] M. Eichenfield et al. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces, Nat. Phot., Volume 1 (2007), p. 416

[42] A. Ashkin Optical Trapping and Manipulation of Neutral Particles Using Lasers, World Scientific, Singapore, 2007

[43] T.W. Hänsch; A.L. Schawlow Cooling of gases with laser radiation, Opt. Comm., Volume 13 (1975), p. 68

[44] D. Van Thourhout; J. Roels Optomechanical device actuation through the optical gradient force, Nat. Phot., Volume 4 (2010), p. 211

[45] J. Teufel et al. Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nat. Nano., Volume 4 (2009), p. 820

[46] M. Eichenfield et al. Optomechanical crystals, Nature, Volume 462 (2010), p. 78

[47] M. Li et al. Harnessing optical forces in integrated photonic circuits, Nature, Volume 456 (2008), p. 480

[48] V.B. Braginsky; S.E. Strigin; S.P. Vyatchanin Parametric oscillatory instability in Fabry–Perot interferometer, Phys. Lett. A, Volume 287 (2001), p. 331

[49] C.K. Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A, Volume 51 (1995), p. 2537

[50] J. Hofer; A. Schliesser; T.J. Kippenberg Cavity optomechanics with ultrahigh-Q crystalline microresonators, Phys. Rev. A, Volume 82 (2010), p. 031804

[51] T. Corbitt et al. An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802

[52] S. Gröblacher et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys., Volume 5 (2009), p. 485

[53] I. Favero et al. Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101

[54] G. Anetsberger et al. Ultralow-dissipation optomechanical resonators on a chip, Nat. Phot., Volume 2 (2008), p. 627

[55] Q. Lin et al. Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett., Volume 103 (2009), p. 103601

[56] I. Favero et al. Fluctuating nanomechanical system in a high finesse optical microcavity, Opt. Expr., Volume 17 (2009), p. 12813

[57] M. Li; W.H.P. Pernice; H.X. Tang Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides, Phys. Rev. Lett., Volume 103 (2009), p. 223901

[58] V. Giovannetti; D. Vitali Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion, Phys. Rev. A, Volume 63 (2001), p. 023812

[59] C.W. Gardiner; M.J. Collett Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, Volume 31 (1985), p. 3761

[60] A. Dorsel et al. Optical bistability and mirror confinement induced by radiation pressure, Phys. Rev. Lett., Volume 51 (1983), p. 1550

[61] B. Sheard et al. Observation and characterization of an optical spring, Phys. Rev. A, Volume 69 (2004), p. 051801

[62] M.L. Gorodetsky; A.E. Fomin Geometrical theory of whispering-gallery modes, IEEE J. Quant. Electr., Volume 12 (2006), p. 33

[63] R. Rivière et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state, 2010 | arXiv

[64] J.G.E. Gardeniers; H.A.C. Tilmans; C.C.G. Visser LPCVD silicon-rich silicon nitride films for applications in micromechanics, studied with statistical experimental design, J. Vac. Sci. Tech. A, Volume 14 (1996), p. 2879

[65] S.S. Verbridge et al. High quality factor resonance at room temperature with nanostrings under high tensile stress, J. Appl. Phys., Volume 99 (2006), p. 124304

[66] P.J. French et al. Optimization of a low-stress silicon nitride process for surface-micromachining applications, Sens. Act. A, Volume 58 (1997), p. 149

[67] H.J. Lee et al. Refractive-index dispersion of phosphosilicate glass, thermal oxide, and silicon nitride films on silicon, Appl. Opt., Volume 27 (1988), p. 4104

[68] D.P. Poenar; R.F. Wolffenbuttel Optical properties of thin-film silicon-compatible materials, Appl. Opt., Volume 36 (1997), p. 5122

[69] T.J. Kippenberg; S.M. Spillane; K.J. Vahala Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett., Volume 85 (2004), p. 6113

[70] D.J. Wilson et al. Cavity optomechanics with stoichiometric SiN films, Phys. Rev. Lett., Volume 103 (2009), p. 207204

[71] A. Mazzei et al. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light, Phys. Rev. Lett., Volume 99 (2007), p. 173603

[72] T.J. Kippenberg et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity, Phys. Rev. Lett., Volume 103 (2009), p. 027406

[73] M.L. Gorodetsky et al. Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Expr., Volume 18 (2010), p. 23236

[74] M. Pinard; Y. Hadjar; A. Heidmann Effective mass in quantum effects of radiation pressure, Eur. J. Phys. D, Volume 7 (1999), p. 107

[75] W. Weaver; S.P. Timoshenko; D.H. Young Vibration Problems Engineering, Wiley and Sons, 1990

[76] D.R. Southworth et al. Stress and silicon nitride: A crack in the universal dissipation of glasses, Phys. Rev. Lett., Volume 102 (2009), p. 225503

[77] Q.P. Unterreithmeier; T. Faust; J.P. Kotthaus Damping of nanomechanical resonators, Phys. Rev. Lett., Volume 105 (2010), p. 027205

[78] M. Zalalutdinov et al. Autoparametric optical drive for micromechanical oscillators, Appl. Phys. Lett., Volume 79 (2001), p. 695

[79] K.J. Vahala Back-action limit of linewidth in an optomechanical oscillator, Phys. Rev. A, Volume 78 (2008), p. 023832

[80] V.B. Braginsky; M.L. Gorodetsky; V.S. Ilchenko Quality-factor and nonlinear properties of optical whispering-gallery modes, Phys. Rev. A, Volume 137 (1989), p. 393

[81] V.S. Ilchenko; M.L. Gorodetskii Thermal nonlinear effects in optical whispering gallery microresonators, Las. Phys., Volume 2 (1992), p. 1004

[82] T. Carmon; L. Yang; K.J. Vahala Dynamical thermal behavior and thermal self-stability of microcavities, Opt. Expr., Volume 12 (2004), p. 4742

[83] V.B. Braginsky; S.P. Vyatchanin Low quantum noise tranquilizer for Fabry–Perot interferometer, Phys. Rev. A, Volume 293 (2002), p. 228

[84] J.M. Dobrindt; T.J. Kippenberg Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer, Phys. Rev. Lett., Volume 104 (2010), p. 033901

[85] I.S. Grudinin et al. Phonon laser action in a tunable two-level system, Phys. Rev. Lett., Volume 104 (2010), p. 083901

[86] C. Zhao et al. Observation of three-mode parametric interactions in long optical cavities, Phys. Rev. A, Volume 78 (2008), p. 023807

[87] D.S. Weiss et al. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres, Opt. Lett., Volume 20 (1995), p. 1835

[88] M.L. Gorodetsky; A.D. Pryamikov; V.S. Ilchenko Rayleigh scattering in high-Q microspheres, JOSA B, Volume 17 (2000), p. 1051

[89] T.J. Kippenberg; S.M. Spillane; K.J. Vahala Modal coupling in traveling-wave resonators, Opt. Lett., Volume 27 (2002), p. 1669

[90] M.L. Gorodetsky; I. Grudinin Fundamental thermal fluctuations in microspheres, JOSA B, Volume 21 (2004), p. 697

[91] A. Schliesser et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators, New J. Phys., Volume 10 (2008), p. 095015

Cité par Sources :

Commentaires - Politique