Comptes Rendus
The next generation radiotelescopes / Les radiotélescopes du futur
Analysis of the RATAN-600 radiotelescope antenna with a multilevel Physical Optics algorithm
Comptes Rendus. Physique, Volume 13 (2012) no. 1, pp. 38-45.

The RATAN-600 antenna is a flexible multireflector system composed of reflectors of very large dimensions. An extended system, with improved performance in the millimetric range, includes a focal receiver array. Accurate electromagnetic analysis of such a system, and simulation of three-dimensional (3D) patterns, represents a substantial computational challenge. A fast Physical Optics method based on a multilevel subdivision of the surfaces of integration is proposed to address this problem. This method allows to perform Physical Optics integrals with a computational complexity comparable to that of the Fast Fourier Transform. The algorithm and initial numerical results of its application to the RATAN-600 antenna system are presented.

Lʼantenne du radiotélescope RATAN-600 est un système flexible composé de plusieurs réflecteurs, dont certains de très grandes dimensions. Dans sa configuration la plus performante pour le domaine millimétrique, elle est dotée dʼun réseau focal. Un tel système constitue un défi du point de vue de lʼanalyse électromagnétique, si lʼon souhaite disposer de résultats précis sur son diagramme dans lʼespace en 3D. Une méthode dʼOptique Physique rapide basée sur une décomposition multi-niveaux des surfaces dʼintégration, permettant de rendre la complexité des calculs dʼintégrales comparable à celle de transformées de Fourier rapides, est proposée pour répondre à ce besoin. Lʼalgorithme de la méthode est présenté, ainsi que son application au cas du RATAN-600 et des résultats numériques.

Published online:
DOI: 10.1016/j.crhy.2011.10.011
Keywords: Radiotelescope, Multireflector antenna, Physical Optics, Multilevel algorithm
Mot clés : Radiotélescope, Antenne multiréflecteurs, Optique Physique, Algorithme multi-niveaux

Christine Letrou 1; Vladimir Khaikin 2; Amir Boag 3

1 TELECOM SudParis, Lab. SAMOVAR (UMR CNRS 5157), 91011 Evry cedex, France
2 The Special Astrophysical Observatory, RAS, Russia
3 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
@article{CRPHYS_2012__13_1_38_0,
     author = {Christine Letrou and Vladimir Khaikin and Amir Boag},
     title = {Analysis of the {RATAN-600} radiotelescope antenna with a multilevel {Physical} {Optics} algorithm},
     journal = {Comptes Rendus. Physique},
     pages = {38--45},
     publisher = {Elsevier},
     volume = {13},
     number = {1},
     year = {2012},
     doi = {10.1016/j.crhy.2011.10.011},
     language = {en},
}
TY  - JOUR
AU  - Christine Letrou
AU  - Vladimir Khaikin
AU  - Amir Boag
TI  - Analysis of the RATAN-600 radiotelescope antenna with a multilevel Physical Optics algorithm
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 38
EP  - 45
VL  - 13
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.10.011
LA  - en
ID  - CRPHYS_2012__13_1_38_0
ER  - 
%0 Journal Article
%A Christine Letrou
%A Vladimir Khaikin
%A Amir Boag
%T Analysis of the RATAN-600 radiotelescope antenna with a multilevel Physical Optics algorithm
%J Comptes Rendus. Physique
%D 2012
%P 38-45
%V 13
%N 1
%I Elsevier
%R 10.1016/j.crhy.2011.10.011
%G en
%F CRPHYS_2012__13_1_38_0
Christine Letrou; Vladimir Khaikin; Amir Boag. Analysis of the RATAN-600 radiotelescope antenna with a multilevel Physical Optics algorithm. Comptes Rendus. Physique, Volume 13 (2012) no. 1, pp. 38-45. doi : 10.1016/j.crhy.2011.10.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.011/

[1] Y. Pariiskii; D. Korolʼkov Experiment COLD: The first deep sky survey with the RATAN-600 radio telescope, Sov. Sci. Rev. E Astrophys. Space Phys., Volume 5 (1986), pp. 39-179

[2] Y. Pariiskii RATAN-600: The worldʼs biggest reflector at the “cross roads”, IEEE Antennas Propagat. Mag., Volume 35 (1993), pp. 7-12

[3] M. Lebedev, V. Khaikin, A. Boag, C. Letrou, Optical and diffraction simulation techniques for large multibeam reflector, in: MSMW10: Seventh IEEE International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkov, Ukraine, 2010, pp. 1–3.

[4] E. Majorova Computation of the RATAN-600 radio telescope power beam pattern with allowance for diffraction effects in the southern-sector-with-flat-reflector mode, Astrophys. Bull., Volume 66 (2011), pp. 215-232

[5] K. Pontoppidan (Ed.), TICRA, Technical Description of GRASP9, http://www.ticra.com, 2005.

[6] A. Boag; C. Letrou Fast Physical Optics algorithm for lens and reflector antennas, IEEE Trans. Antennas Propagat., Volume 51 (2003), pp. 1063-1068

[7] C. Letrou, A. Boag, Generalized multilevel Physical Optics (MLPO) for comprehensive analysis of reflector antennas, IEEE Trans. Antennas Propagat. 60 (2012), , forthcoming. | DOI

[8] O. Bucci; G. Franceschetti On the spatial bandwidth of scattered fields, IEEE Trans. Antennas Propagat., Volume 35 (1987), pp. 1445-1455

[9] O. Bucci; C. Gennarelli; C. Savarese Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples, IEEE Trans. Antennas Propagat., Volume 46 (1998) no. 3, pp. 351-359

[10] A. Boag; C. Letrou Multilevel Fast Physical Optics algorithm for radiation from non-planar apertures, IEEE Trans. Antennas Propagat., Volume 53 (2005), pp. 2064-2072

[11] C. Letrou, A. Boag, Analysis of very large dual-reflector antennas using multilevel Physical Optics algorithm, in: Proc. ICEAAʼ07: International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 2007.

[12] C. Parrot, D. Millot, C. Letrou, A. Boag, Scaling of the multilevel Physical Optics parallel algorithm on a large grid, in: EuCAP 2010: Proc. 4th European Conference on Antennas and Propagation, Barcelona, Spain, 2010, pp. 1–4.

Cited by Sources:

Comments - Policy