Comptes Rendus
Dynamics of coupled multimode and hybrid optomechanical systems
[Dynamique de systèmes optomécaniques hybrides et multimodes]
Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 837-847.

Des développements expérimentaux récents ont permis de réaliser des systèmes optomécaniques avec plusieurs modes optiques et mécaniques en interaction. Parmi ceux-ci, on trouve par exemple les membranes mobiles placées dans des cavités optiques, et les « cristaux optomécaniques » basés sur des structures à cristaux photoniques dans lesquels les modes optiques et mécaniques sont spatialement confinés. Nous montrons comment lʼapplication dʼune force mécanique périodique conduit à un transfert cohérent de photons entre modes optiques, induisant des interférences « Landau–Zener–Stückelberg ». Les systèmes quantiques hybrides constituent un autre domaine où lʼinteraction entre plusieurs modes est importante. Nous décrivons la proposition récente où un atome unique interagit avec une membrane par lʼintermédiaire de la lumière dans une cavité optique. Un tel système permettrait dʼutiliser les outils bien maitrisés de la physique atomique pour manipuler lʼétat quantique du mouvement de la membrane.

Recent experimental developments have brought into focus optomechanical systems containing multiple optical and mechanical modes interacting with each other. Examples include a setup with a movable membrane between two end-mirrors and “optomechanical crystal” devices that support localized optical and mechanical modes in a photonic crystal type structure. We discuss how mechanical driving of such structures results in coherent photon transfer between optical modes, and how the physics of Landau–Zener–Stueckelberg oscillations arises in this context. Another area where multiple modes are involved are hybrid systems. There, we review the recent proposal of a single atom whose mechanical motion is coupled to a membrane via the light field. This is a special case of the general principle of cavity-mediated mechanical coupling. Such a setup would allow the well-developed tools of atomic physics to be employed to access the quantum state of the ‘macroscopic’ mechanical mode of the membrane.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2011.02.004
Keywords: Multimode optomechanics, Coupled dynamics, Hybrid systems, Mechanically driven coherent photon dynamics, Cavity-mediated coupling
Mot clés : Optomécanique multimode, Systèmes hybrides, Dynamique cohérente de photons pilotée par une force mécanique

Georg Heinrich 1 ; Max Ludwig 1 ; Huaizhi Wu 1, 2 ; K. Hammerer 3 ; Florian Marquardt 1, 4

1 Institute for Theoretical Physics, University Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
2 Department of Physics, Fuzhou University, Fuzhou 350002, PR China
3 Institute for Theoretical Physics, Institute for Gravitational Physics, Callinstrasse 38, 30167 Hannover, Germany
4 Max Planck Institute for the Science of Light, Günter-Scharowsky-Str. 1/Bau 24, 91058 Erlangen, Germany
@article{CRPHYS_2011__12_9-10_837_0,
     author = {Georg Heinrich and Max Ludwig and Huaizhi Wu and K. Hammerer and Florian Marquardt},
     title = {Dynamics of coupled multimode and hybrid optomechanical systems},
     journal = {Comptes Rendus. Physique},
     pages = {837--847},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.02.004},
     language = {en},
}
TY  - JOUR
AU  - Georg Heinrich
AU  - Max Ludwig
AU  - Huaizhi Wu
AU  - K. Hammerer
AU  - Florian Marquardt
TI  - Dynamics of coupled multimode and hybrid optomechanical systems
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 837
EP  - 847
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.02.004
LA  - en
ID  - CRPHYS_2011__12_9-10_837_0
ER  - 
%0 Journal Article
%A Georg Heinrich
%A Max Ludwig
%A Huaizhi Wu
%A K. Hammerer
%A Florian Marquardt
%T Dynamics of coupled multimode and hybrid optomechanical systems
%J Comptes Rendus. Physique
%D 2011
%P 837-847
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.02.004
%G en
%F CRPHYS_2011__12_9-10_837_0
Georg Heinrich; Max Ludwig; Huaizhi Wu; K. Hammerer; Florian Marquardt. Dynamics of coupled multimode and hybrid optomechanical systems. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 837-847. doi : 10.1016/j.crhy.2011.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.004/

[1] T.J. Kippenberg; K.J. Vahala Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008), pp. 1172-1176

[2] F. Marquardt; S.M. Girvin Optomechanics, Physics, Volume 2 (2009), p. 40

[3] C.H. Metzger; K. Karrai Cavity cooling of a microlever, Nature, Volume 432 (2004), pp. 1002-1005

[4] D. Kleckner; D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator, Nature, Volume 444 (2006), pp. 75-78

[5] S. Gigan; H.R. Böhm; M. Paternostro; F. Blaser; G. Langer; J.B. Hertzberg; K.C. Schwab; D. Bäuerle; M. Aspelmeyer; A. Zeilinger Self-cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), pp. 67-70

[6] I. Favero; C. Metzger; S. Camerer; D. König; H. Lorenz; J.P. Kotthaus; K. Karrai Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101

[7] T. Corbitt; Y. Chen; E. Innerhofer; H. Müller-Ebhardt; D. Ottaway; H. Rehbein; D. Sigg; S. Whitcomb; C. Wipf; N. Mavalvala An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802

[8] T. Carmon; H. Rokhsari; L. Yang; T.J. Kippenberg; K.J. Vahala Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., Volume 94 (2005), p. 223902

[9] A. Schliesser; O. Arcizet; R. Riviere; G. Anetsberger; T.J. Kippenberg Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., Volume 5 (2009), pp. 509-514

[10] G. Anetsberger; O. Arcizet; Q.P. Unterreithmeier; R. Riviere; A. Schliesser; E.M. Weig; J.P. Kotthaus; T.J. Kippenberg Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., Volume 5 (2009), pp. 909-914

[11] J.D. Teufel; T. Donner; M.A. Castellanos-Beltran; J.W. Harlow; K.W. Lehnert Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nat. Nano., Volume 4 (2009), pp. 820-823

[12] T. Rocheleau; T. Ndukum; C. Macklin; J.B. Hertzberg; A.A. Clerk; K.C. Schwab Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), pp. 72-75

[13] K.W. Murch; K.L. Moore; S. Gupta; D.M. Stamper-Kurn Observation of quantum-measurement backaction with an ultracold atomic gas, Nat. Phys., Volume 4 (2008), pp. 561-564

[14] F. Brennecke; S. Ritter; T. Donner; T. Esslinger Cavity optomechanics with a Bose–Einstein condensate, Science, Volume 322 (2008)

[15] C. Metzger; M. Ludwig; C. Neuenhahn; A. Ortlieb; I. Favero; K. Karrai; F. Marquardt Self-induced oscillations in an optomechanical system driven by bolometric backaction, Phys. Rev. Lett., Volume 101 (2008), p. 133903

[16] J.D. Thompson; B.M. Zwickl; A.M. Jayich; F. Marquardt; S.M. Girvin; J.G.E. Harris Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), pp. 72-75

[17] A.M. Jayich; J.C. Sankey; B.M. Zwickl; C. Yang; J.D. Thompson; S.M. Girvin; A.A. Clerk; F. Marquardt; J.G.E. Harris Dispersive optomechanics: a membrane inside a cavity, New J. Phys., Volume 10 (2008), p. 095008

[18] J.C. Sankey; C. Yang; B.M. Zwickl; A.M. Jayich; J.G.E. Harris Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys., Volume 6 (2010), pp. 707-712

[19] H. Miao; S. Danilishin; T. Corbitt; Y. Chen Standard quantum limit for probing mechanical energy quantization, Phys. Rev. Lett., Volume 103 (2009), p. 100402

[20] A.A. Clerk; F. Marquardt; J.G.E. Harris Quantum measurement of phonon shot noise, Phys. Rev. Lett., Volume 104 (2010), p. 213603

[21] C. Zhao; L. Ju; H. Miao; S. Gras; Y. Fan; D.G. Blair Three-mode optoacoustic parametric amplifier: A tool for macroscopic quantum experiments, Phys. Rev. Lett., Volume 102 (2009), p. 243902

[22] J.M. Dobrindt; T.J. Kippenberg Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer, Phys. Rev. Lett., Volume 104 (2010), p. 033901

[23] I.S. Grudinin; H. Lee; O. Painter; K.J. Vahala Phonon laser action in a tunable two-level system, Phys. Rev. Lett., Volume 104 (2010), p. 083901

[24] M. Eichenfield; J. Chan; R.M. Camacho; K.J. Vahala; O. Painter Optomechanical crystals, Nature, Volume 462 (2009), pp. 78-82

[25] M. Eichenfield; R. Camacho; J. Chan; K.J. Vahala; O. Painter A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, Volume 459 (2009), pp. 550-555

[26] Q. Lin; J. Rosenberg; D. Chang; R. Camacho; M. Eichenfield; K.J. Vahala; O. Painter Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat. Photonics, Volume 4 (2010), pp. 236-242

[27] A.H. Safavi-Naeini; O. Painter Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab, Opt. Express, Volume 18 (2010), pp. 14926-14943

[28] M. Li; W.H.P. Pernice; C. Xiong; T. Baehr-Jones; M. Hochberg; H.X. Tang Harnessing optical forces in integrated photonic circuits, Nature, Volume 456 (2008), pp. 480-484

[29] G. Heinrich; J.G.E. Harris; F. Marquardt Photon shuttle: Landau–Zener–Stückelberg dynamics in an optomechanical system, Phys. Rev. A, Volume 81 (2010), p. 011801(R)

[30] K. Hammerer; M. Wallquist; C. Genes; M. Ludwig; F. Marquardt; P. Treutlein; P. Zoller; J. Ye; H.J. Kimble Strong coupling of a mechanical oscillator and a single atom, Phys. Rev. Lett., Volume 103 (2009), p. 063005

[31] M. Wallquist; K. Hammerer; P. Zoller; C. Genes; M. Ludwig; F. Marquardt; P. Treutlein; J. Ye; H.J. Kimble Single-atom cavity qed and optomicromechanics, Phys. Rev. A, Volume 81 (2010), p. 023816

[32] G. Heinrich; F. Marquardt Coupled multimode optomechanics in the microwave regime, Europhys. Lett., Volume 93 (2011), p. 18003 | DOI

[33] L.D. Landau On the theory of transfer of energy at collisions ii, Phys. Z. Sowjetunion, Volume 2 (1932), pp. 46-51

[34] C. Zener Non-adiabatic crossing of energy levels, Proc. R. Soc. London A, Volume 137 (1932), p. 696

[35] E. Stückelberg Theorie der unelastischen stösse zwischen atomen, Helv. Phys. Acta, Volume 5 (1932), pp. 369-422

[36] F. Marquardt; J.G.E. Harris; S.M. Girvin Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett., Volume 96 (2006), p. 103901

[37] H. Wu; G. Heinrich; F. Marquardt The effect of Landau–Zener dynamics on phonon lasing, 2011 | arXiv

[38] M. Ludwig; B. Kubala; F. Marquardt The optomechanical instability in the quantum regime, New J. Phys., Volume 10 (2008), p. 095013

[39] F. Marquardt; J.P. Chen; A.A. Clerk; S.M. Girvin Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902

[40] I. Wilson-Rae; N. Nooshi; W. Zwerger; T.J. Kippenberg Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901

[41] R. Miller; T.E. Northup; K.M. Birnbaum; A. Boca; A.D. Boozer; H.J. Kimble Trapped atoms in cavity qed: coupling quantized light and matter, J. Phys. B, Volume 38 (2005), p. S551-S565

[42] C. Genes; A. Mari; D. Vitali; P. Tombesi Quantum effects in optomechanical systems, Adv. At. Mol. Opt. Phys., Volume 57 (2009), pp. 33-86

[43] M. Ludwig; K. Hammerer; F. Marquardt Entanglement of mechanical oscillators coupled to a nonequilibrium environment, Phys. Rev. A, Volume 82 (2010), p. 012333 | DOI

[44] M.J. Hartmann; M.B. Plenio Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett., Volume 101 (2008), p. 200503

Cité par Sources :

Commentaires - Politique