[Dynamique de systèmes optomécaniques hybrides et multimodes]
Des développements expérimentaux récents ont permis de réaliser des systèmes optomécaniques avec plusieurs modes optiques et mécaniques en interaction. Parmi ceux-ci, on trouve par exemple les membranes mobiles placées dans des cavités optiques, et les « cristaux optomécaniques » basés sur des structures à cristaux photoniques dans lesquels les modes optiques et mécaniques sont spatialement confinés. Nous montrons comment lʼapplication dʼune force mécanique périodique conduit à un transfert cohérent de photons entre modes optiques, induisant des interférences « Landau–Zener–Stückelberg ». Les systèmes quantiques hybrides constituent un autre domaine où lʼinteraction entre plusieurs modes est importante. Nous décrivons la proposition récente où un atome unique interagit avec une membrane par lʼintermédiaire de la lumière dans une cavité optique. Un tel système permettrait dʼutiliser les outils bien maitrisés de la physique atomique pour manipuler lʼétat quantique du mouvement de la membrane.
Recent experimental developments have brought into focus optomechanical systems containing multiple optical and mechanical modes interacting with each other. Examples include a setup with a movable membrane between two end-mirrors and “optomechanical crystal” devices that support localized optical and mechanical modes in a photonic crystal type structure. We discuss how mechanical driving of such structures results in coherent photon transfer between optical modes, and how the physics of Landau–Zener–Stueckelberg oscillations arises in this context. Another area where multiple modes are involved are hybrid systems. There, we review the recent proposal of a single atom whose mechanical motion is coupled to a membrane via the light field. This is a special case of the general principle of cavity-mediated mechanical coupling. Such a setup would allow the well-developed tools of atomic physics to be employed to access the quantum state of the ‘macroscopic’ mechanical mode of the membrane.
Accepté le :
Publié le :
Mot clés : Optomécanique multimode, Systèmes hybrides, Dynamique cohérente de photons pilotée par une force mécanique
Georg Heinrich 1 ; Max Ludwig 1 ; Huaizhi Wu 1, 2 ; K. Hammerer 3 ; Florian Marquardt 1, 4
@article{CRPHYS_2011__12_9-10_837_0, author = {Georg Heinrich and Max Ludwig and Huaizhi Wu and K. Hammerer and Florian Marquardt}, title = {Dynamics of coupled multimode and hybrid optomechanical systems}, journal = {Comptes Rendus. Physique}, pages = {837--847}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.02.004}, language = {en}, }
TY - JOUR AU - Georg Heinrich AU - Max Ludwig AU - Huaizhi Wu AU - K. Hammerer AU - Florian Marquardt TI - Dynamics of coupled multimode and hybrid optomechanical systems JO - Comptes Rendus. Physique PY - 2011 SP - 837 EP - 847 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.02.004 LA - en ID - CRPHYS_2011__12_9-10_837_0 ER -
%0 Journal Article %A Georg Heinrich %A Max Ludwig %A Huaizhi Wu %A K. Hammerer %A Florian Marquardt %T Dynamics of coupled multimode and hybrid optomechanical systems %J Comptes Rendus. Physique %D 2011 %P 837-847 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.02.004 %G en %F CRPHYS_2011__12_9-10_837_0
Georg Heinrich; Max Ludwig; Huaizhi Wu; K. Hammerer; Florian Marquardt. Dynamics of coupled multimode and hybrid optomechanical systems. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 837-847. doi : 10.1016/j.crhy.2011.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.02.004/
[1] Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008), pp. 1172-1176
[2] Optomechanics, Physics, Volume 2 (2009), p. 40
[3] Cavity cooling of a microlever, Nature, Volume 432 (2004), pp. 1002-1005
[4] Sub-kelvin optical cooling of a micromechanical resonator, Nature, Volume 444 (2006), pp. 75-78
[5] Self-cooling of a micromirror by radiation pressure, Nature, Volume 444 (2006), pp. 67-70
[6] Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101
[7] An all-optical trap for a gram-scale mirror, Phys. Rev. Lett., Volume 98 (2007), p. 150802
[8] Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., Volume 94 (2005), p. 223902
[9] Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., Volume 5 (2009), pp. 509-514
[10] Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., Volume 5 (2009), pp. 909-914
[11] Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nat. Nano., Volume 4 (2009), pp. 820-823
[12] Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010), pp. 72-75
[13] Observation of quantum-measurement backaction with an ultracold atomic gas, Nat. Phys., Volume 4 (2008), pp. 561-564
[14] Cavity optomechanics with a Bose–Einstein condensate, Science, Volume 322 (2008)
[15] Self-induced oscillations in an optomechanical system driven by bolometric backaction, Phys. Rev. Lett., Volume 101 (2008), p. 133903
[16] Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), pp. 72-75
[17] Dispersive optomechanics: a membrane inside a cavity, New J. Phys., Volume 10 (2008), p. 095008
[18] Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys., Volume 6 (2010), pp. 707-712
[19] Standard quantum limit for probing mechanical energy quantization, Phys. Rev. Lett., Volume 103 (2009), p. 100402
[20] Quantum measurement of phonon shot noise, Phys. Rev. Lett., Volume 104 (2010), p. 213603
[21] Three-mode optoacoustic parametric amplifier: A tool for macroscopic quantum experiments, Phys. Rev. Lett., Volume 102 (2009), p. 243902
[22] Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer, Phys. Rev. Lett., Volume 104 (2010), p. 033901
[23] Phonon laser action in a tunable two-level system, Phys. Rev. Lett., Volume 104 (2010), p. 083901
[24] Optomechanical crystals, Nature, Volume 462 (2009), pp. 78-82
[25] A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, Volume 459 (2009), pp. 550-555
[26] Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat. Photonics, Volume 4 (2010), pp. 236-242
[27] Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab, Opt. Express, Volume 18 (2010), pp. 14926-14943
[28] Harnessing optical forces in integrated photonic circuits, Nature, Volume 456 (2008), pp. 480-484
[29] Photon shuttle: Landau–Zener–Stückelberg dynamics in an optomechanical system, Phys. Rev. A, Volume 81 (2010), p. 011801(R)
[30] Strong coupling of a mechanical oscillator and a single atom, Phys. Rev. Lett., Volume 103 (2009), p. 063005
[31] Single-atom cavity qed and optomicromechanics, Phys. Rev. A, Volume 81 (2010), p. 023816
[32] Coupled multimode optomechanics in the microwave regime, Europhys. Lett., Volume 93 (2011), p. 18003 | DOI
[33] On the theory of transfer of energy at collisions ii, Phys. Z. Sowjetunion, Volume 2 (1932), pp. 46-51
[34] Non-adiabatic crossing of energy levels, Proc. R. Soc. London A, Volume 137 (1932), p. 696
[35] Theorie der unelastischen stösse zwischen atomen, Helv. Phys. Acta, Volume 5 (1932), pp. 369-422
[36] Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett., Volume 96 (2006), p. 103901
[37] The effect of Landau–Zener dynamics on phonon lasing, 2011 | arXiv
[38] The optomechanical instability in the quantum regime, New J. Phys., Volume 10 (2008), p. 095013
[39] Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., Volume 99 (2007), p. 093902
[40] Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., Volume 99 (2007), p. 093901
[41] Trapped atoms in cavity qed: coupling quantized light and matter, J. Phys. B, Volume 38 (2005), p. S551-S565
[42] Quantum effects in optomechanical systems, Adv. At. Mol. Opt. Phys., Volume 57 (2009), pp. 33-86
[43] Entanglement of mechanical oscillators coupled to a nonequilibrium environment, Phys. Rev. A, Volume 82 (2010), p. 012333 | DOI
[44] Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett., Volume 101 (2008), p. 200503
Cité par Sources :
Commentaires - Politique