Using firmly established experimental inputs such as , , , , γ, along with corresponding lattice matrix elements which have been well studied and are in full QCD such as , SU(3) breaking ratio ξ, and in particular without using or the pseudoscalar decay constants or from the lattice, we show that the CKM-paradigm now appears to be in serious conflict with the data. Specifically the SM predicted value of seems too high compared to direct experimental measured value by over 3σ. Furthermore, our study shows that new physics predominantly effects B-mixings and , and not primarily in kaon-mixing or in . Model independent operator analysis suggests the scale of underlying new physics, accompanied by a BSM CP-odd phase, responsible for breaking of the SM is less than a few TeV, possibly as low as a few hundred GeV.
Sur la base de données expérimentales bien établies, comme , , , , γ, et dʼéléments de matrice bien étudiés sur réseau, dans le cadre complet de QCD, comme , la mesure ξ de la brisure de SU(3), ou , nous montrons que le paradigme CKM semble en forte tension avec les données. (Nous nʼutilisons à cette fin ni lʼélement ni les constantes de désintégration ou tirés du réseau.) Plus spécifiquement, nous montrons que la valeur prédite par le Modèle Standard pour semble plus élevée que la mesure expérimentale directe, et ce, de plus de 3σ. Notre étude montre de plus que des effets de « nouvelle physique » affectent principalement le mélange des mésons B, ainsi que la désintégration , et pas directement le mélange des mésons K ou le processus . Une analyse « indépendante des modèles », sur base dʼopérateurs effectifs suggère que lʼéchelle pour cette « nouvelle physique », qui comprend une phase brisant CP supplémentaire (au-delà du Modèle Standard) se situe en-dessous de quelques TeV, et pourrait même sʼavérer de lʼordre de quelques centaines de GeV.
Mot clés : Physique de la saveur, LHCb, Super usine á B
Enrico Lunghi 1; Amarjit Soni 2
@article{CRPHYS_2012__13_2_152_0, author = {Enrico Lunghi and Amarjit Soni}, title = {Demise of {CKM} and its aftermath}, journal = {Comptes Rendus. Physique}, pages = {152--158}, publisher = {Elsevier}, volume = {13}, number = {2}, year = {2012}, doi = {10.1016/j.crhy.2011.11.007}, language = {en}, }
Enrico Lunghi; Amarjit Soni. Demise of CKM and its aftermath. Comptes Rendus. Physique, Volume 13 (2012) no. 2, pp. 152-158. doi : 10.1016/j.crhy.2011.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.007/
[1] Progr. Theoret. Phys., 10 (1963), p. 531
[2] Nucl. Phys. B Proc. Suppl., 117 (2003), p. 111
[3] J. Phys. G, 37 (2010), p. 075021
[4] JHEP, 0709 (2007), p. 053
[5] Phys. Lett. B, 666 (2008), p. 162
[6] et al. Phys. Lett. B, 687 (2010), p. 61
[7] JHEP, 0908 (2009), p. 051
[8] Phys. Rev. Lett., 104 (2010), p. 251802
[9] et al. | arXiv
[10] arXiv
|[11] Phys. Rev. D, 81 (2010), p. 034503
[12] arXiv
|[13]
Our value of differs from the average presented in Ref. [12] because it reflects the change in the overall scale () recently adopted by HPQCD Collaboration [47,48].
[14] Nucl. Phys. B, 419 (1994), p. 292
[15] arXiv
|[16] Nucl. Phys. B, 347 (1990), p. 491
[17] Phys. Rev. D, 52 (1995), p. 6505
[18] Phys. Rev. D, 82 (2010), p. 094026
[19] Rev. Mod. Phys., 68 (1996), p. 1125
[20] et al. Eur. Phys. J. C, 69 (2010), pp. 399-424
[21] Phys. Rev. D, 78 (2008), p. 033005
[22] Phys. Lett. B, 688 (2010), p. 309
[23] arXiv
(references therein) |[24] JHEP, 0507 (2005), p. 028
[25] JHEP, 0610 (2006), p. 081
[26] Phys. Rev. Lett., 97 (2006), p. 251802
[27] arXiv
|[28] Phys. Rev. D, 82 (2010), p. 071101
[29]
The inclusive and exclusive determinations of differ at the 1.8σ level even after including an additional 10% model uncertainty to the former. We first calculate the standard weighted average of these two determinations and then, following the PDG prescription, we rescale the resulting uncertainty by the square root of the reduced chi-square.
[30] Phys. Rev. D, 81 (2010), p. 031301
[31] Nucl. Phys. B, 843 (2011), p. 107
[32] arXiv
|[33] Phys. Lett. B, 395 (1997), p. 241
[34] Int. J. Mod. Phys. A, 12 (1997), p. 2459
[35] Phys. Rev. D, 58 (1998), p. 057504
[36] Phys. Lett. B, 407 (1997), p. 61
[37] Phys. Rev. D, 72 (2005), p. 014006
[38] Phys. Rev. D, 72 (2005), p. 094003
[39] Phys. Lett. B, 620 (2005), p. 143
[40] arXiv
|[41] Phys. Lett. B, 644 (2007), pp. 237-240
[42] Phys. Rev. D, 80 (2009), p. 114008
[43] http://www.ichep2010.fr (Talk at ICHEP 2010, July 22–28, 2010, Paris, France)
[44] http://www.bnl.gov/bf2010 (Talk at Brookhaven Forum 2010, May 26–28, BNL)
[45] Phys. Rev. D, 82 (2010), p. 032001
[46] Phys. Rev. Lett., 105 (2010), p. 081801
[47] et al. Phys. Rev. D, 80 (2009), p. 014503
[48] E. Gamiz, Private communication.
[49] Phys. Rev. Lett., 48 (1982), p. 848
[50] JHEP, 0803 (2008), p. 049
Cited by Sources:
☆ Note from the Invited Editors: This article is slightly more advanced than the basic, “well-established topics” approach of the main corpus of this issue. It also shows that, beyond the general concordance of flavour and CP physics with the minimal Cabibbo–Kobayashi–Maskawa scheme, hints for new physics may arise from discrepancies between precision measurements. These are difficult to interpret, notably due to the important role of strong interactions corrections, where input is sought from the latest lattice gauge theory simulations – hence the careful discussion and selection of channels by the authors. This contribution is thus a “frontier” one, and is included to show the current stage of research. This contribution also indicates how new experimental measurements (probably earlier than theoretical progress) will clarify the issue. The editors consider it important to include this contribution, which shows the very active (lively) nature of the field.
Comments - Policy