[Caractérisation des précipités dans les systèmes métalliques utilisant la diffusion aux petits angles des rayons X ou des neutrons]
La technique de diffusion aux petits angles permet lʼobtention dʼinformations précises et quantitatives sur les microstructures de précipitation à lʼéchelle nanométrique. Elle peut être utilisée avec des rayons X (DXPA ou SAXS) ou avec des neutrons (DNPA ou SANS). Cet article présente des méthodes simples pour extraire des informations sur les tailles et fractions volumiques des précipités à partir des spectres de diffusion. Différentes méthodes sont indiquées, ainsi que leur signification et différences. Des exemples dʼapplications sont donnés pour la caractérisation de microstructures complexes dans les cas suivants : mesures in-situ de cinétiques de précipitation dans Fe–Cu et Fe–Nb–C, précipitation non stoechiométrique évaluée par diffusion anormale des rayons X (ASAXS), et cartographie de précipitation dans les sections transverses de soudures.
Small-angle scattering enables the extraction of precise, quantitative information about nano-scale precipitate microstructures. It can be used with X-rays (SAXS) or neutrons (SANS). This paper presents simple methods for extracting information on the precipitate size and volume fraction from SAS spectra. The various possibilities for obtaining precipitate size are reviewed, and the meaning of their differences is discussed. Examples of applications for complex precipitate microstructure measurements are given in the following areas: kinetic in-situ measurements in Fe–Cu and Fe–Nb–C alloys, non-stoichiometric precipitation in an Al–Zn–Mg–Cu alloy studied by anomalous SAXS (ASAXS), and precipitation mapping in weld cross-sections.
Mot clés : Diffusion aux petits angles, DXPA, DNPA, Précipitation
Frédéric De Geuser 1 ; Alexis Deschamps 1
@article{CRPHYS_2012__13_3_246_0, author = {Fr\'ed\'eric De Geuser and Alexis Deschamps}, title = {Precipitate characterisation in metallic systems by small-angle {X-ray} or neutron scattering}, journal = {Comptes Rendus. Physique}, pages = {246--256}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.12.008}, language = {en}, }
TY - JOUR AU - Frédéric De Geuser AU - Alexis Deschamps TI - Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering JO - Comptes Rendus. Physique PY - 2012 SP - 246 EP - 256 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.12.008 LA - en ID - CRPHYS_2012__13_3_246_0 ER -
Frédéric De Geuser; Alexis Deschamps. Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 246-256. doi : 10.1016/j.crhy.2011.12.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.008/
[1] Complex kinetic pathways in multi-component alloys: a multi-scale approach, Nat. Mater., Volume 5 (2006), pp. 482-488
[2] Small-Angle Scattering of X-Rays, John Wiley & Sons, New York, 1955
[3] Small-angle scattering of X-rays, Phys. Today, Volume 9 (1956), p. 38
[4] Small Angle X-Ray Scattering, Academic Press, London, 1982
[5] Small-angle scattering studies of phase separation and defects in inorganic materials, J. Appl. Cryst., Volume 24 (1991) no. 5, pp. 444-456
[6] X-ray and neutron scattering, Phys. Metall., Volume 4 (1996), pp. 1116-1199
[7] Anomalous small-angle x-ray scattering in materials science, J. Appl. Cryst., Volume 36 (2003), p. 425
[8] A new method for the evaluation of small-angle scattering data, J. Appl. Cryst., Volume 10 (1977) no. 5, pp. 415-421
[9] Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method, J. Appl. Cryst., Volume 13 (1980) no. 1, pp. 7-11
[10] Maximum-entropy method as a routine tool for determination of particle size distributions by small-angle scattering, J. Appl. Cryst., Volume 37 (2004) no. 1, pp. 32-39
[11] A small-angle neutron scattering study of fine-scale NbC precipitation kinetics in the Fe–Nb–C system, J. Appl. Cryst., Volume 39 (2006) no. 4, pp. 473-482
[12] Precipitation kinetics and strengthening of a Fe–0.8 wt% Cu alloy, ISIJ Int., Volume 41 (2001) no. 2, pp. 196-205
[13] Characterisation of the composition and volume fraction of [eta]ʼ and [eta] precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle x-ray scattering and transmission electron microscopy, Acta Mater., Volume 53 (2005) no. 10, pp. 2881-2892
[14] Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., Volume 110 (1958) no. 1, pp. 1-13
[15] On the validity of simple precipitate size measurements by small-angle scattering in metallic systems, J. Appl. Cryst., Volume 44 (2011) no. 2, pp. 343-352
[16] Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle x-ray scattering and tomographic atom probe, Philos. Mag., Volume 85 (2005) no. 20, pp. 2197-2210
[17] Study of precipitation kinetics: towards non-isothermal and coupled phenomena, Philos. Mag., Volume 85 (2005) no. 26, pp. 3091-3112
[18] TEM study of NbC heterogeneous precipitation in ferrite, Philos. Mag., Volume 86 (2006) no. 27, pp. 4271-4284
[19] Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys, Acta Mater., Volume 58 (2010) no. 1, pp. 248-260
[20] Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater., Volume 53 (2005) no. 8, pp. 2447-2458
[21] Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS, Acta Mater., Volume 54 (2006), pp. 4793-4801
Cité par Sources :
Commentaires - Politique