Recent developments of more powerful synchrotron sources have led to vast improvements in the performance of X-ray imaging. This is manifested by a continuous increase in the impact of synchrotron experiments in many research areas on materials, in particular solidification science. X-ray imaging has been established as a method of choice for in situ and real-time studies of solidification microstructure formation in metallic alloys, with spatio-temporal resolutions at the scales of relevance. In this article, we present illustrative results of the current capabilities of synchrotron X-ray imaging in this field of research, each of them using different X-ray techniques (radiography, topography and tomography). Those results demonstrate the high potential of these techniques for the investigation of dynamical phenomena in materials processing.
Les récents développements de sources synchrotron plus puissantes ont apporté une amélioration considérable des performances en imagerie X. Ceci sʼest traduit par une augmentation continue de lʼimpact scientifique des expériences effectuées avec une source synchrotron dans de nombreux domaines de recherche sur les matériaux, et en particulier lʼétude de la solidification. Il est bien établi que lʼimagerie X est une méthode de choix pour les études in situ et en temps réel de la formation des microstructures de solidification dans les alliages métalliques, avec des résolutions spatio-temporelles pertinentes. Dans cet article, nous présentons des résultats illustrant les capacités actuelles de lʼimagerie X synchrotron dans de ce domaine de recherche, chacun dʼentre eux utilisant des techniques différentes (radiographie, topographie et tomographie X). Ces résultats démontrent le fort potentiel de ces techniques dʼanalyse pour lʼinvestigation de phénomènes dynamiques en science des matériaux.
Mot clés : Solidification, Synchrotron, Radiographie, Topographie, Tomographie, Microstructure, Alliages
Henri Nguyen-Thi 1, 2; Luc Salvo 3; Ragnvald H. Mathiesen 4; Lars Arnberg 5; Bernard Billia 1, 2; Michel Suery 3; Guillaume Reinhart 1, 2
@article{CRPHYS_2012__13_3_237_0, author = {Henri Nguyen-Thi and Luc Salvo and Ragnvald H. Mathiesen and Lars Arnberg and Bernard Billia and Michel Suery and Guillaume Reinhart}, title = {On the interest of synchrotron {X-ray} imaging for the study of solidification in metallic alloys}, journal = {Comptes Rendus. Physique}, pages = {237--245}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.11.010}, language = {en}, }
TY - JOUR AU - Henri Nguyen-Thi AU - Luc Salvo AU - Ragnvald H. Mathiesen AU - Lars Arnberg AU - Bernard Billia AU - Michel Suery AU - Guillaume Reinhart TI - On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys JO - Comptes Rendus. Physique PY - 2012 SP - 237 EP - 245 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.11.010 LA - en ID - CRPHYS_2012__13_3_237_0 ER -
%0 Journal Article %A Henri Nguyen-Thi %A Luc Salvo %A Ragnvald H. Mathiesen %A Lars Arnberg %A Bernard Billia %A Michel Suery %A Guillaume Reinhart %T On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys %J Comptes Rendus. Physique %D 2012 %P 237-245 %V 13 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.11.010 %G en %F CRPHYS_2012__13_3_237_0
Henri Nguyen-Thi; Luc Salvo; Ragnvald H. Mathiesen; Lars Arnberg; Bernard Billia; Michel Suery; Guillaume Reinhart. On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 237-245. doi : 10.1016/j.crhy.2011.11.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.010/
[1] Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., Volume 35 (1964), p. 444
[2] Lectures in the theory of pattern formation (J.V.a.R.S.J. Souletie, ed.), Chance and Matter, Les Houches Summer School, North Holland, Amsterdam, 1986, p. 629
[3] Microsegregation in Peltier interface demarcation, Journal of Crystal Growth, Volume 216 (2000), pp. 483-494
[4] Transparent compounds that freeze like metals, Acta Metall., Volume 13 (1965), p. 1212
[5] In situ observations of stress-induced defect formation at the solid–liquid interface, Journal of Crystal Growth, Volume 173 (1997), pp. 503-512
[6] Time-resolved X-ray imaging of dendritic growth in binary alloys, Phys. Rev. Lett., Volume 83 (1999), pp. 5062-5065
[7] Direct observation of stray crystal formation in unidirectional solidification of Sn–Bi alloy by X-ray imaging, Journal of Crystal Growth, Volume 262 (2004), pp. 645-652
[8] Application of synchrotron X-ray imaging to the study of directional solidification of aluminium-based alloys, Journal of Crystal Growth, Volume 275 (2005), pp. 201-208
[9] Evolution of characteristic pattern parameters in directional solidification of thin samples of a dilute Al–Cu alloy, Journal of Crystal Growth, Volume 151 (1995), pp. 192-199
[10] Strain visualization of the onset of morphological instability and defect formation in cellular solidification of a dilute Al–Cu alloy, Acta Materialia, Volume 45 (1997), p. 2329
[11] In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al–3.5 wt pct Ni alloys, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 39A (2008), pp. 865-874
[12] On the application of X-ray microtomography in the field of materials science, Advanced Engineering Materials, Volume 3 (2001), pp. 539-546
[13] M.P. Stephenson, J. Beech, In situ radiographic observations of solute redistribution during solidification, in: J. Solidification Cast. Met. Conference Proceedings, Sheffields, UK, 1977, pp. 34–38.
[14] X-ray microscopic observations of metal solidification dynamics, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 25 (1994), pp. 1775-1777
[15] X-ray radioscopic visualization of the solutal convection during solidification of a Ga–30 wt pct in alloy, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science A, Volume 39 (2008), pp. 613-623
[16] X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al–30wt%Cu alloy, Acta Materialia, Volume 53 (2005), pp. 947-956
[17] Phase objects in synchrotron radiation hard X-ray imaging, J. Phys. D-Appl. Phys., Volume 29 (1996), pp. 133-146
[18] On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation, Review of Scientific Instruments, Volume 66 (1995), pp. 5486-5492
[19] High Resolution X-Ray Diffraction and Topography, 1998
[20] Real-time and in situ solidification of Al-based alloys investigated by synchrotron radiation: A unique experimental set-up combining radiography and topography techniques, Phys. Stat. Sol., Volume 204 (2008), pp. 2721-2728
[21] Nature and Properties of Semi-Solid Materials (J.A. Sekhar; J. Dantzig, eds.), TMS, Warrendale, PA, 1991, p. 3
[22] 3D study of the structure of primary crystals in a rheocast Al–Cu alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Volume 283 (2000), pp. 70-75
[23] Three-dimensional characterisation of dendritic microstructures, Acta Materialia, Volume 49 (2001), pp. 897-902
[24] 3D characterisation of intermetallics in a high pressure die cast Mg alloy using focused ion beam tomography, Mater. Charact., Volume 61 (2010), pp. 1035-1042
[25] High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys, Mater. Charact., Volume 62 (2011), pp. 99-107
[26] 3D imaging in material science: Application of X-ray tomography, C. R. Phys., Volume 11 (2010), pp. 641-649
[27] Evolution of pore morphology and distribution during the homogenization of direct chill cast Al–Mg alloys, Acta Materialia, Volume 55 (2007), pp. 285-293
[28] G. Nicoletto, G. Anzelottia, R. Kone, X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys, Procedia Engineering (2010) 547.
[29] An X-ray microtomographic and finite element modeling approach for the prediction of semi-solid deformation behaviour in Al–Cu alloys, Acta Materialia, Volume 57 (2009), pp. 5554-5562
[30] Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., Volume 392 (2005), pp. 112-120
[31] Microstructural changes during quenching, Journal of Crystal Growth, Volume 192 (1998), pp. 300-306
[32] In-situ three-dimensional microstructural investigation of solidification of an Al–Cu alloy by ultrafast X-ray microtomography, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 36A (2005), pp. 1515-1523
[33] In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy, Acta Materialia, Volume 57 (2009), pp. 2300-2310
[34] In situ study of nucleation and growth of the irregular alpha-Al/beta-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography, Acta Materialia, Volume 58 (2010), pp. 5370-5380
[35] Pattern formation in constrained dendritic growth with solutal buoyancy, Acta Materialia, Volume 57 (2009), pp. 2640-2645
[36] Crystal fragmentation and columnar-to-equiaxed transitions in AlCu studied by synchrotron X-ray video microscopy, Metall. Mater. Trans. A, Volume 37A (2006), pp. 2515-2524
[37] Fragmentation due to the interaction of solute flow with the dendritic network during the solidification of aluminum alloys (H. Jones, ed.), 5th Decennial Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 2007, pp. 321-325
[38] The real-time, high-resolution X-ray, video microscopy of solidification in aluminum alloys, JOM, Volume 59 (2007), pp. 20-26
[39] Directional solidification of Al–1.5 wt% Ni alloys under diffusion transport in space and fluid flow localisation on Earth, Journal of Crystal Growth, Volume 281 (2005), pp. 654-668
[40] Cumulative moments and microstructure deformation induced by growth shape in columnar solidification, Phys. Rev. Lett., Volume 93 (2004), p. 126105
[41] Mechanical deformation of dendrites by fluid flow, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 27 (1996), pp. 229-232
[42] Dendritic single-crystals-microstructure and deformation behavior, Helv. Phys. Acta, Volume 58 (1985), pp. 469-483
[43] Dendritic growth and crystalline quality of nickel-base single grains, Journal of Crystal Growth, Volume 130 (1993), pp. 132-146
[44] Microstructural stress concentration: An important role in grain refinement of rheocasting structure, Metallurgical and Materials Transactions A, Volume 36 (2005), pp. 2785-2792
Cited by Sources:
Comments - Policy