Comptes Rendus
Physique : Revue
Réflexions sur lʼavenir de lʼénergie nucléaire, de la France dʼaujourdʼhui au monde de demain : IIe à IVe générations
Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 480-518.

Les évènements récents de Fukushima ont mis en lumière des questions de fond qui doivent être prise en compte pour analyser la position de lʼénergie nucléaire dans le mix énergétique à venir, dans le contexte du réchauffement climatique, de lʼépuisement des ressources pétrolières, de lʼexplosion démographique et du développement industriel rapide. On aborde ici ces problèmes du point de vue de la physique ; et sans prétendre proposer des choix définitifs, cet article a pour objectif dʼinformer sur les équipements nécessaires pour bénéficier de lʼénergie de fission, sur les incidents et accidents possibles, sur lʼutilisation militaire des ressources nucléaires. On sʼattachera particulièrement aux questions dʼestimation et de gestion du risque, de prolifération nucléaire, et dʼindépendance énergétique. On insistera tout particulièrement sur le cycle du combustible nucléaire, et sur les implications du développement de la génération IV, et en particulier, des surgénérateurs. Les leçons à tirer de Fukushima, en particulier sur les puissances résiduelles du combustible usagé, et les conséquences sur les différentes échelles de temps pertinentes seront dégagées.

The recent events at the Fukushima power plants (PP) have brought to light key issues which have to be discussed concerning the position of nuclear energy in the energy mix, in the context of global warming, of waning petroleum resources, of an increasing world population, and of its industrial development. These questions are addressed here from the viewpoint of physical facts; and, without proposing definite choices, this article aims to provide information on the equipment required to benefit from the fission chain reaction, while explaining the possible incidents and accidents, and the possible hidden military misuse of nuclear matter. Specific issues, such as risk assessment and risk management, will be considered, under the constraints of dealing with international non-proliferation safeguards and France energy resources independence. A special emphasis will be given on the fuel cycle, on the variety of time scales involved, and on the requirements of developing the next generation of nuclear power plants, and more specifically the fast breeder option. The lessons to be drawn from the Fukushima accident, resulting mainly from the residual power of used fuel and the loss of cooling source, are outlined, and the consequences to be drawn about the various relevant time scales are emphasized.

Publié le :
DOI : 10.1016/j.crhy.2012.02.001
Mot clés : Nucléaire et cycle du combustible, Sûreté, sécurité, radioprotection, Centrales, MOX, Laboratoires souterrains, Piscines
Keywords: Nuclear energy and nuclear fuel cycle, Safety, Power plants, Plutonium, Underground laboratory, Pools
Robert Dautray 1 ; Jacques Friedel 1 ; Yves Bréchet 1

1 Académie des Sciences, 23 quai Conti, 75006 Paris, France
@article{CRPHYS_2012__13_5_480_0,
     author = {Robert Dautray and Jacques Friedel and Yves Br\'echet},
     title = {R\'eflexions sur l'avenir de l'\'energie nucl\'eaire, de la {France} d'aujourd'hui au monde de demain : {II\protect\textsuperscript{e}} \`a {IV\protect\textsuperscript{e}} g\'en\'erations},
     journal = {Comptes Rendus. Physique},
     pages = {480--518},
     publisher = {Elsevier},
     volume = {13},
     number = {5},
     year = {2012},
     doi = {10.1016/j.crhy.2012.02.001},
     language = {fr},
}
TY  - JOUR
AU  - Robert Dautray
AU  - Jacques Friedel
AU  - Yves Bréchet
TI  - Réflexions sur lʼavenir de lʼénergie nucléaire, de la France dʼaujourdʼhui au monde de demain : IIe à IVe générations
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 480
EP  - 518
VL  - 13
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.02.001
LA  - fr
ID  - CRPHYS_2012__13_5_480_0
ER  - 
%0 Journal Article
%A Robert Dautray
%A Jacques Friedel
%A Yves Bréchet
%T Réflexions sur lʼavenir de lʼénergie nucléaire, de la France dʼaujourdʼhui au monde de demain : IIe à IVe générations
%J Comptes Rendus. Physique
%D 2012
%P 480-518
%V 13
%N 5
%I Elsevier
%R 10.1016/j.crhy.2012.02.001
%G fr
%F CRPHYS_2012__13_5_480_0
Robert Dautray; Jacques Friedel; Yves Bréchet. Réflexions sur lʼavenir de lʼénergie nucléaire, de la France dʼaujourdʼhui au monde de demain : IIe à IVe générations. Comptes Rendus. Physique, Volume 13 (2012) no. 5, pp. 480-518. doi : 10.1016/j.crhy.2012.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.02.001/

[1] R. Dautray, Lʼénergie nucléaire civile dans le cadre temporel du changement climatique, Rapport à lʼAcadémie des Sciences, TEC/DOC, Lavoisier, décembre 2001.

[2] Eugene Wigner; Alvin Weinberg The Physical Theory of Neutron CHAIN Reactors, University of Chicago Press, 1958

[3] M. Elimelech et al. The future of sea water desalination: Energy, technology and the environment, Science, Volume 333 ( 5 August 2011 ), pp. 712-717 (and online supplement)

[4] R. Dautray Quelles énergies pour demain ?, Odile Jacob, 2004 (chapitre 4)

[5] R. Dautray; Jacques Friedel Surgénérateurs : lʼétat des matériaux aux hautes irradiations, hautes températures, hautes puissance locales et températures, leurs gradients et propriétés mécaniques adaptées aux contraintes qui en résultent, C. R. Méc., Volume 338 (2010), pp. 649-655

[6] R. Dautray The long term future for civilian nuclear power generation in France: the case for breeder reactor, novelties and issues, C. R. Méc., Volume 339 (2011), p. 369

[7] C. Perrow Normal Accidents, Living with High-risk Technologies, Princeton University Press, 1984

[8] C. Perrow The Next Catastrophe, Reducing our Vulnerabilities to Natural, Industrial and Terrorist Disasters, Princeton University Press, 2007

[9] F. Carré, Jean-Marie Delbecq, Overview of the French nuclear fuel cycle strategy and transition scenarios studies, in: Global 2009, Paris, September 6–11, 2009.

[10] Massimo Salvatores, Sensibility of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties, Nuclear Engineering Division, Argonne National Laboratory, 2005.

[11] Paul Reuss Clefs pour la neutronique des réacteurs à eau, INSTN (Institut National des Sciences et Techniques Nucléaires), 1990

[12] Jean Bussac; Paul Reuss Traité de neutronique, physique et calcul des réacteurs nucléaires avec applications aux réacteurs à eau pressurisée et aux réacteurs à neutrons rapides, Hermann, 1985

[13] N. Camarcat et al. Industrial research for transmutation scenarios, C. R. Méc., Volume 339 (2011), pp. 209-218

[14] Charles D. Bowman, Once-through thermal-spectrum accelerator-driven light water reactor waste destruction without reprocessing: Special on accelerator applications, Los Alamos National Laboratory.

[15] D. Tscharntke, et al., Ultrasonic investigations on copper canister welds in preparation for the storage of spent nuclear fuel in a deep repository, ECNT, 2006, We.4.6.2.

[16] R. Mansuy; M. Yor Aspects of Brownian Motion, Universitext, Springer Verlag, Berlin, 2008

[17] A.J. Majda et al. Information Theory and Stochastic for Multiscale non Linear Systems, American Mathematical Society, 2005

[18] R. Dautray; P.-L. Lions; E. Pardoux; R. Sentis; G. Le Danois; M. Cessenat Méthodes probabilistes pour les équations de la physique, Collection CEA, Editions Eyrolles, 1989

[19] R. Dautray, Sécurité et utilisation hostile du nucléaire civil, De la physique à la biologie, Rapport à lʼAcadémie des Sciences, Paris, Editions TEC DOC, Lavoisier, juin 2007.

[20] R. Kalman, Communications personnelles de tirés à part.

[21] R. Guillaumont Update on the Chemical Thermo Dynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, 2003

[22] R. Dautray; J. Friedel Energy: towards nuclear breeder installations before the end of the century?, C. R. Acad. Sci., Sér. IIb Méc., Volume 335 (2007), pp. 61-74

[23] A. Goetzberger; C. Hebling; H.-W. Schock Photovoltaic materials, history, status and outlook, Mater. Sci. Eng. R Rep., Volume 40 (2003), pp. 1-46

[24] R.-W. Miles; H.M. Hynes; I. Forbes Photovoltaic solar cells: an overview of state of the art cell development and environmental issue, Progr. Cryst. Growth, Volume 51 (2005), pp. 1-42

[25] N. Lewis; D. Nocera Powering the planet, chemical challenges in solar energy, PNAS, Volume 10 ( 24 October 2006 ) no. 43, pp. 15729-15735

[26] V. Artero; M. Fontecave Future of sciences, science for the future, CRAS Chim., Volume 14 (2011) no. 9, pp. 799-810

[27] M. Ichimiya The status of GENeration IV sodium cooled fast reactor technology development and its future project, Energy Procedia, Volume 7 (2011), pp. 79-87

[28] L.K. Mansur; A.F. Rowcliffe; R.K. Nanstad; S.J. Zinkle; W.R. Corwin; R.E. Stoller Materials needs for fusion, GENeration IV fission reactors and spallation neutron source, similarities and differences, J. Nucl. Mat., Volume 329-333 (2004), pp. 166-172

[29] S. Delpech et al. Reactor physics and reprocessing scheme for innovative molten salt reactor system, J. Fluorine Chem. (2008) | DOI

[30] E. Merle-Lucotte et al. Introduction to the Physics of Molten Salt Reactors, Springer, 2008 (pp. 501–521)

[31] R. Chéret, A. Delpuech, C. Michaud, La détonation des explosifs condensés, collection CEA, Série scientifique, tomes 1 et 2, Masson.

[32] J. Bouchard The fast breeder reactor, At. Energy, Volume 109 (2011) no. 5, pp. 299-308 (Springer)

[33] C. Lemaignan Science des Matériaux pour le Nucléaire, EDP Sciences, 2004

[34] W. Dietz Structural Materials in Materials Science and Technology, a Comprehensive Treatment, vol. 10B (R.W. Cahn; P. Haasen; E.J. Kramer, eds.), 1994, pp. 56-172

[35] A. Zaoui (Ed.), Materiaux du Nucleaire, Rapport RST 5, Tec et Doc, Lavoisier, Paris, 2000.

[36] H. Bailly; D. Ménessier; C. Prunier Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides, Collection CEA, Sér. Synth., Eyrolles, 1996

[37] R.L. Klueh; D.S. Gelles; S. Jitsukawa; A. Kimura; G.R. Odette; B. Van Der Schaaf; M. Victoria Ferritic Martensitic steels: overview of recent results, J. Nucl. Mat., Volume 307–311 (2002), pp. 455-465

[38] R.L. Kueh; A.T. Nelson Ferritic Martensitic steels for next generation reactors, J. Nucl. Mat., Volume 371 (2007), pp. 37-52

[39] M. Rieth; J.L. Boutard; S.L. Dudarev; E. Materna-Morris; J. Major Fe–Cr–V ferritic steels for possible nuclear applications, J. Nucl. Mat., Volume 408 (2011), pp. 140-146

[40] Q. Huang; C. Li; Y. Li; M. Chen; M. Zhang; L. Peng; Z. Zhu; Y. Song; S. Gao Progress in development of China Low activation martensitic steel for fusion application, J. Nucl. Mat., Volume 367–370 (2007), pp. 142-146

[41] M. Ando; M. Li; H. Tanigawa; M.L. Grossbeck; S. Kim; T. Sawai; K. Shiba; Y. Kohno; A. Kohyama Creep behaviour of reduced activation ferritic/martensitic steels irradiated at 573 and 773 K up to 5 dpa, J. Nucl. Mat., Volume 367–370 (2007), pp. 122-126

[42] P. Spating; R. Bonade; G.R. Odette; J.W. Rensmann; E.N. Campitelli; P. Mueller Plastic flow properties and fracture toughness characterisation of unirradiated and irradiated tempered martensitic steels, J. Nucl. Mat., Volume 367–370 (2007), pp. 527-538

[43] E. Galatnize; H.-C. Schneider; B. Daffener; J. Aktaa Embrittlement behaviour of neutron irradiated RAFM steels, J. Nucl. Mat., Volume 367–370 (2007), pp. 81-85

[44] E. Tanigawa; H. Sakasegawa; H. Ogiwara; H. Kishimoto; A. Kohyama Radiation induced phase instability of precipitates in a reduced activation ferritoc/artensitic steel, J. Nucl. Mat., Volume 367–370 (2007), pp. 132-136

[45] J. Henry; L. Vincent; X. Averty; B. Marini; P. Jung Effect of a high helium content on the flow and fracture properties of a 9Cr martensitic steel, J. Nucl. Mat., Volume 367–370 (2007), pp. 411-416

[46] B. Fournier; M. Sauzay; C. Caës; M. Noblecourt; M. Mottot An analysis of the hysteresis loop of a martensitic steel: Study of the influence of strain amplitude and temperature under pure fatigue loadings using an enhanced stress partitioning method, Math. Sci. Eng. A, Volume 437 (2006), pp. 183-196

[47] B. Fournier; M. Sauzay; C. Caës; M. Noblecourt; M. Mottot; A. Pineau An analysis of the hysteresis loop of a martensitic steel: Study of the influence of creep and stress relaxation holding time on cyclic behaviour, Math. Sci. Eng. A, Volume 437 (2006), pp. 197-211

[48] T. Muroga; T. Nagasaka; K. Abe; V.M. Chernov; H. Matsui; D.L. Smith; Z.-Y. Xu; S.J. Zinkle Vanadium alloys: overview and recent results, J. Nucl. Mat., Volume 307-311 (2002), pp. 547-554

[49] T. Muroga; J.M. Chen; V.M. Chernov; K. Fukumoto; D.T. Hoeltzer; R.J. Kurtz; T. Nagasaka; B.A. Pint; M. Satou; A. Suzuki; H. Watanabe Review of advances in development of vanadium alloys, J. Nucl. Mat., Volume 367–370 (2007), pp. 780-787

[50] Y. De Carlan; J.L. Bechade; P. Dubuisson; J.L. Seran; P. Billot; A. Bougaut; T. Cozzika; S. Doriot; D. Hamon; J. Henri; M. Ratti; N. Lochet; D. Nunes; P. Olier; T. Leblond; M.H. Mathon CEA Developments of new ferritic ODS alloys for nuclear applications, J. Nucl. Mat., Volume 386-388 (2009), pp. 430-432

[51] P. Miao; G.R. Odette; T. Yamamoto; M. Alinger; D. Hoeltzer; D. Cragg Effect of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys, J. Nucl. Mat., Volume 367–370 (2007), pp. 208-212

[52] R. Kasada; N. Toda; K. Yutani; H.S. Cho; H. Kishimoto; A. Kimura Pre and post deformation microstructures of oxide dispersion strengthened ferritic steel, J. Nucl. Mat., Volume 367–370 (2007), pp. 222-228

[53] A. Alamo; H. Regle; G. Pons; J.L. Bechade Microstructure and texture of ODS ferritic alloys obtained by mechanical alloying, Mat. Sci. Forum, Volume 88–90 (1992), pp. 183-190

[54] S. Ukai; T. Narita; A. Alamo; P. Parmentier Tube manufacturing trials by different routes in 9Cr-ODS martensitic steel, J. Nucl. Mat., Volume 329–333 (2004), pp. 356-361

[55] C. Cayron; E. Rath; I. Chu; S. Launois Microstructural evolution of Y2O3 and Mg2Al2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing, J. Nucl. Mat., Volume 335 (2004), pp. 83-102

[56] D. Hoeltzer; J. Bentley; M. Sokolov; M. Miller; G. Odette; M. Alinger Influence of particle dispersion on the high temperature strength of ferritic alloys, J. Nucl. Mat., Volume 367–370 (2007), pp. 166-172

[57] A. Alamo; V. Lambard; X. Averty; M.H. Mathon Assessment of ODS 14% Ferritic steel for high temperature applications, J. Nucl. Mat., Volume 329–333 (2004), pp. 333-337

[58] M. Tanelke; F. Abe; K. Sawada Creep strengthening of steel at high temperatures using nano-sized carbonitrides dispersion, Nature, Volume 424 (2003), pp. 294-296

[59] A. Alamo; J.L. Bertin; V.K. Shamardin; P. Wident Mechanical properties of 9Cr martensitic steel and ODS FeCr alloys after neutron irradiation at 325 °C up to 42 DPA, J. Nucl. Mat., Volume 367–370 (2007), pp. 54-59

[60] H.S. Cho; R. Kasada; A. Kimura Effect of neutron irradiation on the tensile properties of high-Cr oxides dispersion strengthened ferritic steels, J. Nucl. Mat., Volume 367–370 (2007), pp. 239-243

[61] P. Dubuisson; R. Schill; M.P. Hugon; I. Grislin; J.L. Seran Behaviour of an oxide dispersion strengthened steel irradiated in Phenix (R. Nanstad; M. Hamilton; F. Gardner; A. Kumar, eds.), Effect of Radiation in Materials: 18th International Symposium, ASTM, 1999 (ASTM STP 1325)

[62] M. Toloczko; D. Gelles; F. Garner; R.J. Kurtz; K. Abe Irradiation creep and swelling of the oxide dispersion strengthened ferritic alloy MA957, J. Nucl. Mat., Volume 329–333 (2004), pp. 352-355

[63] I. Monnet; P. Dubuisson; Y. Serruys; M.O. Ruault; O. Kaitasov; B. Jouffrey Microstructural investigation of the stability under irradiation of axide dispersion strengthened ferritic steels, J. Nucl. Mat., Volume 335 (2004), pp. 311-321

[64] A. Ramar; N. Baluc; R. Schaublin Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic martensitic steel, J. Nucl. Mat., Volume 367–370 (2007), pp. 217-221

[65] Y. Katoh; L.L. Snead; C.H. Henager; A. Hasegawa; A. Kohyama; B. Riccardi; H. Hegeman Current status and critical issues for the development of SiC composites for fusion applications, J. Nucl. Mat., Volume 367–370 (2007), pp. 659-671

[66] M. Ratti, Comportement en fluage dʼalliages ferritiques renforcés par une dispersion dʼoxide nanométrique, Thèse Université de Grenoble, 2010.

[67] G. Was Fundamentals of Radiation Materials Science, Metals and Alloys, Springer, 2007

[68] J. Garnier; C. Pokor; Y. Brechet; P. Dubuisson Irradiation creep of SA 304L and CW 316 stainless steels: mechanical behaviour and microstructural aspects I: Experimental results, J. Nucl. Mater., Volume 413 (2011) no. 2, pp. 63-69

[69] J. Garnier; C. Pokor; Y. Brechet; P. Dubuisson Irradiation creep of SA 304L and CW 316 stainless steels: mechanical behaviour and microstructural aspects II: Modelling via cluster dynamics simulations, J. Nucl. Mater., Volume 413 (2011) no. 2, pp. 70-75

[70] B. Van der Schaaf; E. Diegele; R. Laessner; A. Moeslang Structural materials developments and databases, Fusion Eng. Des., Volume 81 (2006), pp. 893-900

[71] S. Maloy; B. Rogers; W. Ren; P. Rittenhouse Status of materials handbooks for particle accelerator and nuclear reactor applications, J. Nucl. Mat., Volume 377 (2008), pp. 94-96

[72] S. Sharafat; G.R. Odette; J. Blanchard Materials and design interface, J. Nucl. Mat., Volume 386–388 (2009), pp. 896-899

[73] G. Was Materials degradation in fission reactors: lesson learned of relevance to fusion reactor systems, J. Nucl. Mat., Volume 367–370 (2007), pp. 11-20

[74] S. Zinkle; N. Ghoniem Prospects for accelerated development of high performance structural materials, J. Nucl. Mat., Volume 417 (2011), pp. 2-8

[75] C. Pokor; Y. Brechet; P. Dubuisson; J.P. Massoud; A. Barbu Irradiation damage in 304 and 316 stainless steels: evolution of the microstructure, J. Nucl. Mat., Volume 326 (2004), pp. 19-29

[76] C. Pokor; Y. Brechet; P. Dubuisson; J.P. Massoud; A. Barbu Irradiation damage in 304 and 316 stainless steels: irradiation induced hardening, J. Nucl. Mat., Volume 326 (2004), pp. 30-37

[77] M. Robinson Basic physics of radiation damage production, J. Nucl. Mat., Volume 216 (1994), pp. 1-28

[78] N. Doan; F. Rossi Computer simulations, Solid State Phenom., Volume 30–31 (1993), pp. 75-106

[79] G. Martin; P. Bellon Driven alloys, Solid State Phys., Volume 50 (1997), pp. 189-331

[80] P. Bellon; G. Martin Cooperative processes in alloys under irradiation, Solid State Phenom., Volume 30 (1993) no. 31, pp. 107-148

[81] M. Li; S. Zinkle Fracture mechanisms in unirradiated abs irradiated metals and alloys, J. Nucl. Mat., Volume 362 (2007), pp. 192-205

[82] P. Scott A review of irradiation assisted stress corrosion cracking, J. Nucl. Mat., Volume 211 (1994), pp. 101-122

[83] H.C. Schneider; J. Aktaa; R. Rolli Small fracture toughness specimen for post irradiation experiments, J. Nucl. Mat., Volume 367–370 (2007), pp. 599-602

[84] G.E. Lucas; G. Odette; H. Matsui; A. Moslang; P. Spatig; J. Rensman; T. Yamamoto The role of small specimen test technology in fusion materials development, J. Nucl. Mat., Volume 367–370 (2007), pp. 1549-1556

[85] S. Gravier; M. Colombier; A. Safi; N. Andre; A. Boe; J.-P. Rasquin; T. Pardoen New on-ship nanomechanical testing lab, JMEM, Volume 18 (2009) no. 3, pp. 555-569

[86] M. Colombier; A. Boe; C. Brugger; J.-P. Rasquin; T. Pardoen Imperfection sensitive ductility of aluminium thin films, Scripta Mat., Volume 62 (2010), pp. 742-745

[87] Kazuo Todani, JAEA Activities towards Environmental restoration of Fukushima, 16 October 2011, Headquarters of Fukushima partnership, October 16, 2011, operations, Japan Atomic Energy Agency, JAEA.

[88] Masaru Moriya, Fukushima Decontamination Promotion Team, LNER headquarters, remediation efforts in Japan, October 16, 2011.

[89] Ministry of Agriculture, of Forestry and Fisheries-MAAF, Development of technologies for the removal of radioactive materials from agricultural soil in Japan, December 2011.

[90] S. Marguet La physique des réacteurs nucléaires, Collection EDF/R&D, Editions TEC et DOC, Lavoisier, 2011

[91] T. Matsui Deciphering the measured ratios of iodine −131 to cesium 137 at the Fukushima rectors, University of Tokyo, 27 June 2011

[92] R. Vogt; J. Randrop Event-by-event study of neutron observables in spontaneous fission and thermal fission, 17 September 2011 | arXiv

[93] M. Salvatores; A. Zaetta High level nuclear waste management, how physics can help, Interdiscip. Sci. Rev., Volume 23 (1998) no. 3

[94] R. Dautray, Les isotopes du plutonium et leurs descendants dans le nucléaire civil, TEC/DOC, Lavoisier, 2005.

[95] Pierre Guéguenat; Pierre Germain; Henri Métivier Radionuclides in the Oceans, Inputs and Inventories, Les éditions de physique, Institut de protection et de sûreté nucléaire, 1996

[96] G. Brumfiel Fallout forensics hike radiation toll, Science, Volume 478 ( 18 October 2011 ), pp. 435-436

[97] M. Salvatores; G. Palmiotti Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges, Prog. Part. Nucl. Phys., Volume 66 (2011), pp. 144-166

[98] M. Salvatores Nuclear fuel cycle strategies including partitioning and transmutation, Nucl. Eng. Des., Volume 235 (2005), pp. 805-807

[99] M. Salvatores Physics features comparison of TRU burners: Fusion/fission Hybrids, accelerator-driven systems and low conversion ratio critical fast reactors, Ann. Nucl. Energy, Volume 36 (2009), pp. 1653-1662

[100] World Energy Outlook, International Energy Agency, OECD/IEA, 2010.

[101] World Energy Outlook, International Energy Agency, OECD/IEA, 2011.

[102] International Energy Agency, World Energy Outlook, OECD/IEA, 2011, 659 pp., http://www.iea.org.

[103] Glenn Seaborg The plutonium story (Ronald Kathren; Jerry B. Gough; Gary T. Benefield, eds.), The Journals of Professor Glenn T. Seaborg, 1939–1946, Batttelle Press, 1994

[104] M. Ashby, Materials for low carbon power, preprint, 2011.

[105] J. Magill; G. Pfennig; J. Galy Chart of the Nuclides, Institute for Transuranium Elements, Joint Center of the European Commission, Karlsruhe, 2006

[106] D.J.C. Mackay Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003 (2007)

[107] H. Nifenecker Le nucleaire, un choix raisonnable?, EDP Sciences, 2011

[108] Daniel Massignon Gaseous diffusion (S. Villani, ed.), Uranium Enrichment, Springer Verlag, 1979, pp. 123-131

[109] D. Dubbers; M. Schmidt The neutron and its role in cosmology and particule physics, VIB1, neutron lifetime, Rev. Mod. Phys., Volume 83 (2011) (article number 1111)

[110] L. Hodeson et al. Critical Assembly, A Technical History of Los Alamos, Cambridge University Press, 1993

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Le plutonium et la cohérence du parc électronucléaire français

Robert Dautray; Jacques Friedel

C. R. Phys (2013)


Contrôler et limiter la dispersion des produits radioactifs des centrales électronucléaires en cas d'accident

Robert Dautray; Jacques Friedel; Yves Bréchet

C. R. Phys (2014)


Surgénérateurs ; l'état des matériaux aux hautes irradiations, hautes puissances locales et températures, leurs gradients et propriétés mécaniques adaptées aux contraintes qui en résultent

Robert Dautray; Jacques Friedel

C. R. Méca (2010)