Astronomical dark matter could be made of weakly interacting and massive particles. If so, these species would be abundant inside the Milky Way, where they would continuously annihilate and produce cosmic rays. Those annihilation products are potentially detectable at the Earth, and could provide indirect clues for the presence of dark matter species within the Galaxy. We will review here the various cosmic radiations which the dark matter can produce. We will examine how they propagate throughout the Milky Way and compare the dark matter yields with what pure astrophysical processes are expected to generate. The presence of dark matter substructures might enhance the signals and will be briefly discussed.
La matière noire astronomique pourrait être constituée de particules massives aux interactions évanescentes. Si tel était le cas, ces particules se retrouveraient en abondance au sein de la Voie Lactée où elles sʼannihileraient en permanence, produisant de multiples radiations cosmiques. Celles-ci sont éventuellement visibles de la Terre et constituent dès lors des sortes dʼempreintes spectrales, véritables signatures indirectes des candidats potentiels à la matière noire galactique. Dans cet article, nous passons en revue les différentes espèces cosmiques susceptibles dʼêtre produites, et comparons leur flux avec celui des radiations engendrées par les processus astrophysiques conventionnels. Lʼexistence de condensations de matière noire est brièvement discutée. Le taux dʼannihilation pourrait être amplifié au sein de telles structures, conduisant à des signatures indirectes plus intenses que dans le cas dʼun halo galactique lisse.
Mot clés : Matière noire astronomique, Rayons cosmiques, Anti-matière galactique, Rayons gamma, Neutrinos
Julien Lavalle 1; Pierre Salati 2
@article{CRPHYS_2012__13_6-7_740_0, author = {Julien Lavalle and Pierre Salati}, title = {Dark matter indirect signatures}, journal = {Comptes Rendus. Physique}, pages = {740--782}, publisher = {Elsevier}, volume = {13}, number = {6-7}, year = {2012}, doi = {10.1016/j.crhy.2012.05.001}, language = {en}, }
Julien Lavalle; Pierre Salati. Dark matter indirect signatures. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 740-782. doi : 10.1016/j.crhy.2012.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.05.001/
[1] Dark Matter: the astrophysical case, C. R. Physique, Volume 13 (2012), p. 724 (in this issue)
[2] Theories of particle dark matter, C. R. Physique, Volume 13 (2012), p. 719 (in this issue)
[3] Direct detection of WIMPs, C. R. Physique, Volume 13 (2012), p. 730 (in this issue)
[4] Phys. Rev. D, 65 (2002), p. 023002 | arXiv
[5] et al. Galactic cosmic ray nuclei as a tool for astroparticle physics | arXiv
[6] Astron. Astrophys., 54 (1977), pp. 973-974
[7] Astrophys. J., 509 (1998), p. 212 | arXiv
[8] http://galprop.stanford.edu/ (See the web site and references therein)
[9] http://www.desy.de/maccione/DRAGON/ (See the web site and references therein)
[10] et al. Cosmic rays below in a diffusion model: new constraints on propagation parameters, Astrophys. J., Volume 555 (2001), p. 585 | arXiv
[11] et al. Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D, Volume 69 (2004), p. 063501 | arXiv
[12] Astron. Astrophys., 516 (2010), p. A66 | arXiv
[13] J. Phys. G, 9 (1983), p. 1289
[14] Phys. Rev. D, 75 (2007), p. 083006 | arXiv
[15] Phys. Rev. D, 26 (1982), p. 1179
[16] J. Phys. G, 9 (1983), p. 227
[17] Astrophys. J., 526 (1999), p. 215 | arXiv
[18] et al. Phys. Rev. Lett., 19 (1967), p. 198
[19] et al. Flux of light antimatter nuclei near Earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D, Volume 71 (2005), p. 083013 | arXiv
[20] Phys. Rev. D, 78 (2008), p. 043506 | arXiv
[21] et al. Anti-protons from spallations of cosmic rays on interstellar matter, Astrophys. J., Volume 563 (2001), p. 172 | arXiv
[22] Phys. Rev. Lett., 93 (2004), p. 231805 | arXiv
[23] JCAP, 0502 (2005), p. 002 | arXiv
[24] et al. Kaluza–Klein dark matter and Galactic antiprotons, Phys. Rev. D, Volume 72 (2005), p. 063507 | arXiv
[25] et al. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett., Volume 105 (2010), p. 121101 | arXiv
[26] Astrophys. J., 490 (1997), p. 493 | arXiv
[27] et al. Dark matter substructure within galactic halos, Astrophys. J., Volume 524 (1999), p. L19
[28] et al. The inner structure of LambdaCDM halos III: universality and asymptotic slopes, Mon. Not. Roy. Astron. Soc., Volume 349 (2004), p. 1039 | arXiv
[29] Mon. Not. Roy. Astron. Soc., 353 (2004), p. 624 | arXiv
[30] et al. The cored distribution of dark matter in spiral galaxies, Mon. Not. Roy. Astron. Soc., Volume 351 (2004), p. 903 | arXiv
[31] Mon. Not. Roy. Astron. Soc., 353 (2004), p. L17-L22 | arXiv
[32] A novel determination of the local dark matter density, JCAP, Volume 1008 (2010), p. 004 | arXiv | DOI
[33] The dark matter density at the Sunʼs location, Astron. Astrophys., Volume 523 (2010), p. 83 | arXiv | DOI
[34] Mass models of the Milky Way, MNRAS, Volume 414 (2011), pp. 2446-2457 | arXiv | DOI
[35] On the local dark matter density | arXiv
[36] Astrophys. J. Suppl., 44 (1980), p. 73
[37] et al. Dark matter search results from the CDMS II experiment, Science, Volume 327 (2010), pp. 1619-1621 | arXiv
[38] et al. Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett., Volume 106 (2011), p. 131301 | arXiv
[39] Phys. Rev. D, 82 (2010), p. 081302 | arXiv
[40] Nuclear Phys. B, 854 (2012), pp. 738-779 | arXiv
[41] JHEP, 0106 (2001), p. 053 | arXiv
[42] Phys. Rev. D, 70 (2004), p. 095004 | arXiv
[43] et al. Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. Lett., Volume 92 (2004), p. 031303 (See also Phys. Rev. D, 71, 2005, pp. 063528) | arXiv
[44] et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature, Volume 458 (2009), pp. 607-609 | arXiv
[45] Astrophys. J., 493 (1998), pp. 694-707 | arXiv
[46] Phys. Rev. D, 59 (1999), p. 023511 | arXiv
[47] et al. Positrons from dark matter annihilation in the galactic halo: theoretical uncertainties, Phys. Rev. D, Volume 77 (2008), p. 063527 | arXiv
[48] Phys. Rev. D, 15 (1977), p. 820
[49] et al. Parameterization of γ, and neutrino spectra produced by p–p interaction in astronomical environment, Astrophys. J., Volume 647 (2006), p. 692 | arXiv
[50] et al. An excess of cosmic ray electrons at energies of 300.800 GeV, Nature, Volume 456 (2008), pp. 362-365
[51] et al. The energy spectrum of cosmic-ray electrons at TeV energies, Phys. Rev. Lett., Volume 101 (2008), p. 261104 | arXiv
[52] et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys., Volume 508 (2009), p. 561 | arXiv
[53] et al. Measurement of the Cosmic Ray plus spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett., Volume 102 (2009), p. 181101 | arXiv
[54] et al. On possible interpretations of the high energy electron–positron spectrum measured by the Fermi Large Area Telescope, Astropart. Phys., Volume 32 (2009), pp. 140-151 | arXiv
[55] et al. Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes, Astron. Astrophys., Volume 524 (2010), p. A51 | arXiv
[56] Astrophys. J., 613 (2004), pp. 962-976 | arXiv
[57] et al. Galactic secondary positron flux at the Earth, Astron. Astrophys., Volume 501 (2009), pp. 821-833 | arXiv
[58] et al. PAMELA measurements of cosmic-ray proton and helium spectra, Science, Volume 332 (2011), pp. 69-72 | arXiv
[59] et al. Systematic effects in the estimate of the local gamma-ray emissivity | arXiv
[60] et al. The Alpha magnetic spectrometer (AMS) on the international space station. I: Results from the test flight on the space shuttle, Phys. Rept., Volume 366 (2002), p. 331 (Erratum)
[61] Mon. Not. Roy. Astron. Soc., 414 (2011), p. 985L | arXiv
[62] et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl., Volume 192 (2011), p. 18 | arXiv
[63] et al. Constraints on WIMP Dark Matter from the High Energy PAMELA data, Phys. Rev. Lett., Volume 102 (2009), p. 071301 | arXiv
[64] Phys. Lett. B, 571 (2003), pp. 121-131 | arXiv
[65] JCAP, 0311 (2003), p. 006 | arXiv
[66] Phys. Lett. B, 681 (2009), pp. 151-160 | arXiv
[67] Nuclear Phys. B, 800 (2008), pp. 204-220 | arXiv
[68] et al. A theory of Dark Matter, Phys. Rev. D, Volume 79 (2009), p. 015014 | arXiv
[69] Phys. Lett. B, 671 (2009), pp. 391-397 | arXiv
[70] Phys. Lett. B, 662 (2008), pp. 53-61 | arXiv
[71] Phys. Rev. D, 79 (2009), p. 083523 | arXiv
[72] et al. Model-independent implications of the , anti-proton cosmic ray spectra on properties of Dark Matter, Nuclear Phys. B, Volume 813 (2009), pp. 1-21 | arXiv
[73] et al. A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett., Volume 102 (2009), p. 051101 | arXiv
[74] Astrophys. J., 699 (2009), p. L59-L63 | arXiv
[75] et al. Gamma-ray and radio tests of the excess from DM annihilations, JCAP, Volume 0903 (2009), p. 009 | arXiv
[76] et al. Gamma-ray and radio constraints of high positron rate dark matter models annihilating into new light particles, Phys. Rev. D, Volume 79 (2009), p. 081303 | arXiv
[77] et al. Dark matter interpretations of the excesses after FERMI, Nuclear Phys. B, Volume 831 (2010), pp. 178-203 | arXiv
[78] Nuclear Phys. B, 840 (2010), pp. 284-303 | arXiv
[79] et al. Updated CMB constraints on Dark Matter annihilation cross-sections, Phys. Rev. D, Volume 84 (2011), p. 027302 | arXiv
[80] Phys. Rev. D, 80 (2009), p. 043526 | arXiv
[81] et al. Clumpiness of dark matter and positron annihilation signal: computing the odds of the Galactic lottery, Astron. Astrophys., Volume 462 (2007), pp. 827-848 | arXiv
[82] et al. Full calculation of clumpiness boost factors for antimatter cosmic rays in the light of Lambda-CDM N-body simulation results. Abandoning hope in clumpiness enhancement?, Astron. Astrophys., Volume 479 (2008), pp. 427-452 | arXiv
[83] Mon. Not. Roy. Astron. Soc., 374 (2007), pp. 455-465 | arXiv
[84] Phys. Rev. D, 79 (2009), p. 103513 | arXiv
[85] et al. The cosmic ray lepton puzzle in the light of cosmological N-body simulations, Phys. Rev. D, Volume 80 (2009), p. 035023 | arXiv
[86] et al. Clumps and streams in the local dark matter distribution, Nature, Volume 454 (2008), pp. 735-738 | arXiv
[87] JCAP, 0902 (2009), p. 021 | arXiv
[88] et al. Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP, Volume 0908 (2009), p. 017 | arXiv
[89] et al. Gamma-ray lines from radiative dark matter decay, JCAP, Volume 1101 (2011), p. 032 | arXiv
[90] et al. Decaying hidden gauge boson and the PAMELA and ATIC/PPB-BETS anomalies, Progr. Theoret. Phys., Volume 122 (2009), pp. 553-559 | arXiv
[91] Central Eur. J. Phys., 10 (2011), pp. 1-31 | arXiv
[92] Phys. Lett. B, 409 (1997), pp. 313-320 | arXiv
[93] Phys. Rev. D, 62 (2000), p. 043003 | arXiv
[94] Sov. J. Nucl. Phys., 36 (1982), p. 357
[95] V. Choutko, F. Giovacchini, on behalf of the AMS Collaboration, in: Proceedings of the 30th International Cosmic Ray Conference, vol. 4 (HE part 1), 2008, pp. 765–768.
[96] et al. Development of the gaseous antiparticle spectrometer for space-based antimatter detection, Nucl. Instrum. Meth. B, Volume 214 (2004), pp. 122-125 | arXiv
[97] et al. Accelerator testing of the general antiparticle spectrometer, a novel approach to indirect dark matter detection, JCAP, Volume 0601 (2006), p. 007 | arXiv
[98] et al. Antideuterons as an indirect dark matter signature: Design and preparation for a balloon-borne GAPS experiment, J. Phys. Conf. Ser., Volume 120 (2008), p. 042011
[99] Phys. Lett. B, 683 (2010), pp. 248-254 | arXiv
[100] JHEP, 1011 (2010), p. 017 | arXiv
[101] Phys. Rev. D, 70 (2004), p. 103529 | arXiv
[102] Phys. Rev. D, 67 (2003), p. 075014 | arXiv
[103] Phys. Lett. B, 225 (1989), p. 372
[104] Phys. Rev. Lett., 94 (2005), p. 171301 | arXiv
[105] et al. Gamma rays from Kaluza–Klein dark matter, Phys. Rev. Lett., Volume 94 (2005), p. 131301 | arXiv
[106] et al. Robust gamma ray signature of WIMP dark matter | arXiv
[107] et al. Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett., Volume 95 (2005), p. 241301 | arXiv
[108] Rev. Modern Phys., 42 (1970), pp. 237-270
[109] et al. On prospects for dark matter indirect detection in the constrained MSSM, Phys. Lett. B, Volume 671 (2009), pp. 10-14 | arXiv
[110] http://www-glast.stanford.edu/ (See the web site and references therein)
[111] Phys. Rev. Lett., 28 (1972), p. 985
[112] et al. The GeV–TeV galactic gamma-ray diffuse emission I. Uncertainties in the predictions of the hadronic component, Astron. Astrophys., Volume 531 (2011), p. A37 | arXiv
[113] et al. EGRET observations of the extragalactic gamma ray emission, Astrophys. J., Volume 494 (1998), p. 523
[114] Very high energy gamma rays from the direction of Sagittarius , Astron. Astrophys., Volume 425 (2004), p. L13 | arXiv
[115] Discovery of very-high-energy gamma rays from the galactic centre ridge, Nature, Volume 439 (2006), p. 695 | arXiv
[116] Complementarity of direct dark matter detection and indirect detection through gamma rays, Phys. Rev. D, Volume 83 (2011) no. 4, p. 045024 | arXiv | DOI
[117] et al. High-energy gamma-ray emission from the Galactic Center, Astron. Astrophys., Volume 335 (1998), pp. 161-172
[118] The Galactic center as a dark matter gamma-ray source, Astropart. Phys., Volume 21 (2004), pp. 267-285 | arXiv | DOI
[119] Contraction of dark matter galactic halos due to baryonic infall, Astrophys. J., Volume 301 (1986), pp. 27-34 | DOI
[120] Dark matter annihilation at the galactic center, Phys. Rev. Lett., Volume 83 (1999), pp. 1719-1722 | arXiv | DOI
[121] Response of dark matter halos to condensation of baryons: cosmological simulations and improved adiabatic contraction model, Astrophys. J., Volume 616 (2004), pp. 16-26 | arXiv | DOI
[122] Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature, Volume 463 (2010), pp. 203-206 | DOI
[123] et al. Very high energy gamma rays from the direction of Sagittarius , Astron. Astrophys., Volume 425 (2004), p. L13-L17 | arXiv | DOI
[124] Gamma Rays from Kaluza–Klein Dark Matter, Phys. Rev. Lett., Volume 94 (2005) no. 13, p. 131301 | arXiv | DOI
[125] Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett., Volume 95 (2005) no. 24, p. 241301 | arXiv | DOI
[126] Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center, Phys. Rev. D, Volume 71 (2005) no. 6, p. 063528 | arXiv | DOI
[127] Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett., Volume 104 (2010) no. 15, p. 151301 | arXiv | DOI
[128] High-energy gamma rays from the massive black hole in the galactic center, Astrophys. J., Volume 619 (2005), pp. 306-313 | arXiv | DOI
[129] The high-energy, arcminute-scale galactic center gamma-ray source, Astrophys. J., Volume 726 (2011), p. 60 | arXiv | DOI
[130] Gamma-ray and radio tests of the excess from DM annihilations, J. Cosmol. Astropart. Phys., Volume 3 (2009), p. 9 | arXiv | DOI
[131] Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum, JCAP, Volume 1011 (2010), p. 41 | arXiv | DOI
[132] Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B, Volume 697 (2011), pp. 412-428 | arXiv | DOI
[133] Origin of the gamma rays from the Galactic Center, Phys. Rev. D, Volume 84 (2011) no. 12, p. 123005 | arXiv | DOI
[134] A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B, Volume 705 (2011), pp. 165-169 | arXiv | DOI
[135] Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind?, Astrophys. J., Volume 724 (2010), pp. 1044-1082 | arXiv | DOI
[136] Fermi bubbles: giant, multibillion-year-old reservoirs of galactic center cosmic rays, Phys. Rev. Lett., Volume 106 (2011) no. 10, p. 101102 | arXiv | DOI
[137] Fermi gamma-ray “bubbles” from stochastic acceleration of electrons, Phys. Rev. Lett., Volume 107 (2011) no. 9, p. 091101 | arXiv | DOI
[138] Implications of high-resolution simulations on indirect dark matter searches, Phys. Rev. D, Volume 83 (2011) no. 2, p. 023518 | arXiv | DOI
[139] The all-sky distribution of 511 keV electron–positron annihilation emission, Astron. Astrophys., Volume 441 (2005), pp. 513-532 | arXiv | DOI
[140] MeV dark matter: Has it been detected?, Phys. Rev. Lett., Volume 92 (2004) no. 10, p. 101301 | arXiv | DOI
[141] The 511 keV emission from positron annihilation in the Galaxy, Rev. Modern Phys., Volume 83 (2011), pp. 1001-1056 | arXiv | DOI
[142] et al. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes, Phys. Rev. Lett., Volume 103 (2009) no. 25, p. 251101 | DOI
[143] Fermi-LAT observations of the diffuse gamma-ray emission: Implications for cosmic rays and the interstellar medium | arXiv
[144] The GeV–TeV galactic gamma-ray diffuse emission. I. Uncertainties in the predictions of the hadronic component, Astron. Astrophys., Volume 531 (2011), p. A37 | arXiv | DOI
[145] Contribution of blazars to the extragalactic diffuse gamma-ray background and their future spatial resolution, Phys. Rev. D, Volume 84 (2011) no. 10, p. 103007 | arXiv | DOI
[146] Observable monochromatic photons from cosmic photino annihilation, Phys. Rev. D, Volume 37 (1988), pp. 3737-3741 | DOI
[147] Gamma-ray lines as a probe for a cold-dark-matter halo, Phys. Rev. D, Volume 40 (1989), pp. 3168-3186 | DOI
[148] Gamma ray lines from TeV dark matter, Astropart. Phys., Volume 2 (1994), pp. 261-268 | arXiv | DOI
[149] Gamma-ray constraint on galactic positron production by MeV dark matter, Phys. Rev. Lett., Volume 94 (2005) no. 17, p. 171301 | arXiv | DOI
[150] New gamma-ray contributions to supersymmetric dark matter annihilation, J. High Energy Phys., Volume 1 (2008), p. 49 | arXiv | DOI
[151] et al. Fermi large area telescope search for photon lines from 30 to 200 GeV and dark matter implications, Phys. Rev. Lett., Volume 104 (2010) no. 9, p. 091302 | arXiv | DOI
[152] Hunting dark matter gamma-ray lines with the Fermi LAT, J. Cosmol. Astropart. Phys., Volume 1105 (2011), p. 27 | arXiv | DOI
[153] Gamma ray line constraints on effective theories of dark matter, Nuclear Phys. B, Volume 844 (2011), pp. 55-68 | arXiv | DOI
[154] Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation | arXiv
[155] Exclusion of canonical weakly Interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi gamma-ray space telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24, p. 241303 | arXiv | DOI
[156] et al. Fermi LAT observation of diffuse gamma rays produced through interactions between local interstellar matter and high-energy cosmic rays, Astrophys. J., Volume 703 (2009), pp. 1249-1256 | arXiv | DOI
[157] et al. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi large area telescope data, Phys. Rev. Lett., Volume 104 (2010) no. 10, p. 101101 | arXiv | DOI
[158] et al. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement, JCAP, Volume 1004 (2010), p. 14 | arXiv | DOI
[159] Current and future constraints on dark matter from prompt and inverse-Compton photon emission in the isotropic diffuse gamma-ray background, Phys. Rev. D, Volume 85 (2012) no. 4, p. 043509 | arXiv | DOI
[160] Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission, JCAP, Volume 1101 (2011), p. 11 | arXiv | DOI
[161] Extragalactic gamma-ray signal from dark matter annihilation: a power spectrum based computation, Mon. Not. Roy. Astron. Soc., Volume 421 (2012), p. L87-L91 | arXiv | DOI
[162] et al. Observations of Milky Way dwarf spheroidal galaxies with the Fermi large area telescope detector and constraints on dark matter models, Astrophys. J., Volume 712 (2010), pp. 147-158 | arXiv | DOI
[163] et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi large area telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24, p. 241302 | arXiv | DOI
[164] et al. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S, Phys. Rev. Lett., Volume 106 (2011) no. 16, p. 161301 | arXiv | DOI
[165] Constraints on WIMP and Sommerfeld-enhanced dark matter annihilation from HESS observations of the galactic center, JCAP, Volume 1201 (2012), p. 41 | arXiv | DOI
[166] Dark matter sees the light, J. High Energy Phys., Volume 0912 (2009), p. 52 | arXiv | DOI
[167] Robust implications on dark matter from the first FERMI sky γ map, JCAP, Volume 1003 (2010), p. 14 | arXiv | DOI
[168] Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ-ray observatories – I. The classical dwarf spheroidal galaxies, Mon. Not. R. Astron. Soc. Lett., Volume 418 (2011), pp. 1526-1556 | arXiv | DOI
[169] Dark matter in the classical dwarf spheroidal galaxies: a robust constraint on the astrophysical factor for γ-ray flux calculations, Astrophys. J. Lett., Volume 733 (2011), p. L46 | arXiv | DOI
[170] et al. Upper limit for γ-ray emission above 140 GeV from the dwarf spheroidal galaxy draco, Astrophys. J., Volume 679 (2008), pp. 428-431 | arXiv | DOI
[171] et al. VERITAS search for VHE gamma-ray emission from dwarf spheroidal galaxies, Astrophys. J., Volume 720 (2010), pp. 1174-1180 | arXiv | DOI
[172] et al. H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies, Astropart. Phys., Volume 34 (2011), pp. 608-616 | arXiv | DOI
[173] Extracting limits on Dark Matter annihilation from dwarf spheroidal galaxies at gamma-rays | arXiv
[174] Detection of neutralino annihilation photons from external galaxies, Phys. Rev. D, Volume 61 (1999) no. 2, p. 023514 | arXiv | DOI
[175] Supersymmetric dark matter in M31: can one see neutralino annihilation with CELESTE?, Astropart. Phys., Volume 20 (2004), pp. 467-484 | arXiv | DOI
[176] Neutralino annihilation into γ rays in the Milky Way and in external galaxies, Phys. Rev. D, Volume 70 (2004) no. 10, p. 103529 | arXiv | DOI
[177] et al. Search for TeV gamma ray emission from the Andromeda galaxy, Astron. Astrophys., Volume 400 (2003), pp. 153-159 | arXiv | DOI
[178] et al. Indirect search for dark matter in M 31 with the CELESTE experiment, Astron. Astrophys., Volume 450 (2006), pp. 1-8 | arXiv | DOI
[179] et al. A search for dark matter annihilation with the Whipple 10 m telescope, Astrophys. J., Volume 678 (2008), pp. 594-605 | arXiv | DOI
[180] et al. Fast variability of tera-electron volt γ rays from the radio galaxy M87, Science, Volume 314 (2006), pp. 1424-1427 | arXiv | DOI
[181] et al. VERITAS observations of day-scale flaring of M 87 in 2010 April, Astrophys. J., Volume 746 (2012), p. 141 | arXiv | DOI
[182] et al. Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes, Astron. Astrophys., Volume 539 (2012), p. L2 | arXiv | DOI
[183] et al. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33, Astron. Astrophys., Volume 523 (2010), p. L2 | arXiv | DOI
[184] et al. Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT, Astron. Astrophys., Volume 523 (2010), p. A46 | DOI
[185] et al. Observations of the Large Magellanic Cloud with Fermi, Astron. Astrophys., Volume 512 (2010), p. A7 | DOI
[186] Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster, Astron. Astrophys., Volume 455 (2006), pp. 21-43 | arXiv | DOI
[187] Prospects of detecting gamma-ray emission from galaxy clusters: Cosmic rays and dark matter annihilations, Phys. Rev. D, Volume 84 (2011) no. 12, p. 123509 | arXiv | DOI
[188] Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?, JCAP, Volume 1112 (2011), p. 11 | arXiv | DOI
[189] Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters, JCAP, Volume 1201 (2012), p. 42 | arXiv | DOI
[190] Decaying dark matter: Stacking analysis of galaxy clusters to improve on current limits, Phys. Rev. D, Volume 85 (2012) no. 6, p. 063517 | arXiv | DOI
[191] Gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis | arXiv
[192] Disentangling cosmic-ray and dark matter induced gamma-rays in galaxy clusters? | arXiv
[193] et al. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope, JCAP, Volume 1005 (2010), p. 25 | arXiv | DOI
[194] A combined analysis of clusters of galaxies — gamma-ray emission from cosmic rays and dark matter | arXiv
[195] Evidence for extended gamma-ray emission from galaxy clusters | arXiv
[196] Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution, Mon. Not. R. Astron. Soc. Lett., Volume 409 (2010), pp. 449-480 | arXiv | DOI
[197] Capture by the Sun of a galactic population of weakly interacting, massive particles, Astrophys. J., Volume 296 (1985), pp. 679-684 | DOI
[198] The photino, the Sun, and high-energy neutrinos, Phys. Rev. Lett., Volume 55 (1985), pp. 257-259 | DOI
[199] Can scalar neutrinos or massive Dirac neutrinos be the missing mass?, Phys. Lett. B, Volume 167 (1986), pp. 295-300 | DOI
[200] Solar System constraints and signatures for dark-matter candidates, Phys. Rev. D, Volume 33 (1986), pp. 2079-2083 | DOI
[201] Limits on cold-dark-matter candidates from deep underground detectors, Phys. Rev. D, Volume 34 (1986), pp. 2206-2222 | DOI
[202] Three-dimensional calculation of atmospheric neutrinos, Phys. Rev. D, Volume 70 (2004) no. 2, p. 023006 | arXiv | DOI
[203] Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D, Volume 83 (2011) no. 12, p. 123001 | arXiv | DOI
[204] Detector design studies for a cubic kilometer Deep Sea neutrino telescope KM3NeT, J. Phys. Conf. Ser., Volume 136 (2008) no. 4, p. 042063 | arXiv | DOI
[205] Invited review article: IceCube: An instrument for neutrino astronomy, Rev. Sci. Instrum., Volume 81 (2010) no. 8, p. 081101 | arXiv | DOI
[206] Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP, Volume 26 (1968), p. 984
[207] A. Strumia, F. Vissani, Neutrino masses and mixings and…, . | arXiv
[208] Phenomenology with massive neutrinos, Phys. Rept., Volume 460 (2008), pp. 1-129 | arXiv | DOI
[209] High-energy neutrinos in the context of multimessenger astrophysics, Phys. Rept., Volume 458 (2008), pp. 173-246 | arXiv | DOI
[210] Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D, Volume 67 (2003) no. 7, p. 073024 | arXiv | DOI
[211] Neutrino oscillations in matter, Phys. Rev. D, Volume 17 (1978), pp. 2369-2374 | DOI
[212] Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy, Nuovo Cimento C Geophys. Space Phys., Volume 9 (1986), pp. 17-26 | DOI
[213] Neutrino oscillations with three flavors in matter: Applications to neutrinos traversing the Earth, Phys. Lett. B, Volume 474 (2000), pp. 153-162 | arXiv | DOI
[214] Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach, JCAP, Volume 0801 (2008), p. 21 | arXiv | DOI
[215] Spectra of neutrinos from dark matter annihilations, Nuclear Phys. B, Volume 727 (2005), pp. 99-138 | arXiv | DOI
[216] High energy neutrinos from neutralino annihilations in the Sun, Phys. Rev. D, Volume 76 (2007) no. 9, p. 095008 | arXiv | DOI
[217] Neutrinos from dark matter annihilations at the galactic center, Phys. Rev. D, Volume 70 (2004) no. 6, p. 063503 | arXiv | DOI
[218] Muon fluxes and showers from dark matter annihilation in the Galactic center, Phys. Rev. D, Volume 81 (2010) no. 9, p. 096007 | arXiv | DOI
[219] et al. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope, Phys. Rev. D, Volume 84 (2011) no. 2, p. 022004 | arXiv | DOI
[220] Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett., Volume 64 (1990), pp. 615-618 | DOI
[221] Sensitivity of the IceCube neutrino detector to dark matter annihilating in dwarf galaxies, Phys. Rev. D, Volume 81 (2010) no. 8, p. 083506 | arXiv | DOI
[222] Cosmic asymmetry, neutrinos and the Sun, Nuclear Phys. B, Volume 283 (1987), pp. 681-705 | DOI
[223] Weakly interacting massive particle distribution in and evaporation from the Sun, Astrophys. J., Volume 321 (1987), pp. 560-570 | DOI
[224] WIMP mass determination with neutrino telescopes, Phys. Lett. B, Volume 357 (1995), pp. 595-601 | arXiv | DOI
[225] Signals of neutralino dark matter from Earth and Sun, Astropart. Phys., Volume 3 (1995), pp. 65-75 | arXiv | DOI
[226] Searching for relic neutralinos using neutrino telescopes, Astropart. Phys., Volume 5 (1996), pp. 333-352 | arXiv | DOI
[227] J. Edsjö, Aspects of neutrino detection of neutralino dark matter, Ph.D. thesis, Uppsala Univ., . | arXiv
[228] Indirect detection of dark matter in km-size neutrino telescopes, Phys. Rev. D, Volume 58 (1998) no. 10, p. 103519 | arXiv | DOI
[229] DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP, Volume 0407 (2004), p. 8 | arXiv | DOI
[230] Prospects for detecting dark matter with neutrino telescopes in light of recent results from direct detection experiments, Phys. Rev. D, Volume 73 (2006) no. 12, p. 123507 | arXiv | DOI
[231] Investigating light neutralinos at neutrino telescopes, Phys. Rev. D, Volume 80 (2009) no. 9, p. 095019 | arXiv | DOI
[232] Testing the Dark Matter interpretation of the DAMA/LIBRA result with Super-Kamiokande, JCAP, Volume 0901 (2009), p. 32 | arXiv | DOI
[233] New limits on dark matter from Super-Kamiokande, Nuclear Phys. B, Volume 850 (2011), pp. 505-521 | arXiv | DOI
[234] Downward-going tau neutrinos as a new prospect of detecting dark matter, J. High Energy Phys., Volume 1111 (2011), p. 133 | arXiv | DOI
[235] Supersymmetric dark matter, Phys. Rept., Volume 267 (1996), pp. 195-373 | arXiv | DOI
[236] Resonant enhancements in weakly interacting massive particle capture by the Earth, Astrophys. J., Volume 321 (1987), pp. 571-585 | DOI
[237] Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys., Volume 6 (1996), pp. 87-112 | DOI
[238] Spin-dependent neutralino-nucleus scattering for Ã127 nuclei, Phys. Rev. C, Volume 56 (1997), pp. 535-546 | arXiv | DOI
[239] Direct and indirect capture of weakly interacting massive particles by the Earth, Astrophys. J., Volume 328 (1988), pp. 919-939 | DOI
[240] Is the dark disc contribution to dark matter signals important?, Phys. Rev. D, Volume 82 (2010) no. 2, p. 023534 | arXiv | DOI
[241] Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D, Volume 77 (2008) no. 6, p. 065026 | arXiv | DOI
[242] Prospects for indirect detection of neutralino dark matter, Phys. Rev. D, Volume 63 (2001) no. 4, p. 045024 | arXiv | DOI
[243] Neutrino indirect detection of neutralino dark matter in the CMSSM, Eur. Phys. J. C, Volume 26 (2002), pp. 111-124 | arXiv | DOI
[244] Prospects for dark matter detection with IceCube in the context of the CMSSM, JCAP, Volume 0908 (2009), p. 34 | arXiv | DOI
[245] Probing Kaluza–Klein dark matter with neutrino telescopes, Phys. Rev. D, Volume 67 (2003) no. 5, p. 055003 | arXiv | DOI
[246] Neutrinos from Kaluza–Klein dark matter in the Sun, JCAP, Volume 1001 (2010), p. 18 | arXiv | DOI
[247] Signatures of cosmic-ray interactions on the solar surface, Astrophys. J., Volume 382 (1991), pp. 652-666 | DOI
[248] High energy neutrino production by cosmic ray interactions in the Sun, Phys. Rev. D, Volume 54 (1996), pp. 4385-4392 | arXiv | DOI
[249] et al. An indirect search for weakly interacting massive particles in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J., Volume 742 (2011), p. 78 | arXiv | DOI
[250] et al. Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D, Volume 85 (2012) no. 4, p. 042002 | arXiv | DOI
[251] et al. Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D, Volume 84 (2011) no. 1, p. 011102 | arXiv | DOI
[252] et al. Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett., Volume 107 (2011) no. 13, p. 131302 | arXiv | DOI
[253] et al. Limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) Crystal Detectors, Phys. Rev. Lett., Volume 99 (2007) no. 9, p. 091301 | arXiv | DOI
[254] et al. Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber, Phys. Rev. Lett., Volume 106 (2011) no. 2, p. 021303 | arXiv | DOI
[255] et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C (2008), p. 167 | arXiv | DOI
[256] et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., Volume 106 (2011) no. 13, p. 131301 | arXiv | DOI
[257] et al. Dark matter spin-dependent limits for WIMP interactions on by PICASSO, Phys. Lett. B, Volume 682 (2009), pp. 185-192 | arXiv | DOI
Cited by Sources:
Comments - Policy