Comptes Rendus
Dark matter indirect signatures
[Signatures indirectes des particules de matière noire]
Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 740-782.

La matière noire astronomique pourrait être constituée de particules massives aux interactions évanescentes. Si tel était le cas, ces particules se retrouveraient en abondance au sein de la Voie Lactée où elles sʼannihileraient en permanence, produisant de multiples radiations cosmiques. Celles-ci sont éventuellement visibles de la Terre et constituent dès lors des sortes dʼempreintes spectrales, véritables signatures indirectes des candidats potentiels à la matière noire galactique. Dans cet article, nous passons en revue les différentes espèces cosmiques susceptibles dʼêtre produites, et comparons leur flux avec celui des radiations engendrées par les processus astrophysiques conventionnels. Lʼexistence de condensations de matière noire est brièvement discutée. Le taux dʼannihilation pourrait être amplifié au sein de telles structures, conduisant à des signatures indirectes plus intenses que dans le cas dʼun halo galactique lisse.

Astronomical dark matter could be made of weakly interacting and massive particles. If so, these species would be abundant inside the Milky Way, where they would continuously annihilate and produce cosmic rays. Those annihilation products are potentially detectable at the Earth, and could provide indirect clues for the presence of dark matter species within the Galaxy. We will review here the various cosmic radiations which the dark matter can produce. We will examine how they propagate throughout the Milky Way and compare the dark matter yields with what pure astrophysical processes are expected to generate. The presence of dark matter substructures might enhance the signals and will be briefly discussed.

Publié le :
DOI : 10.1016/j.crhy.2012.05.001
Keywords: Astronomical dark matter, Cosmic rays, Galactic antimatter, Gamma-rays, Neutrinos
Mot clés : Matière noire astronomique, Rayons cosmiques, Anti-matière galactique, Rayons gamma, Neutrinos
Julien Lavalle 1 ; Pierre Salati 2

1 Laboratoire univers & particules de Montpellier (LUPM), CNRS-IN2P3 & université Montpellier II (UMR-5299), place Eugène-Bataillon, 34095 Montpellier cedex 05, France
2 LAPTh, CNRS & université de Savoie, 9, chemin de Bellevue, B.P. 110, 74941 Annecy-le-Vieux cedex, France
@article{CRPHYS_2012__13_6-7_740_0,
     author = {Julien Lavalle and Pierre Salati},
     title = {Dark matter indirect signatures},
     journal = {Comptes Rendus. Physique},
     pages = {740--782},
     publisher = {Elsevier},
     volume = {13},
     number = {6-7},
     year = {2012},
     doi = {10.1016/j.crhy.2012.05.001},
     language = {en},
}
TY  - JOUR
AU  - Julien Lavalle
AU  - Pierre Salati
TI  - Dark matter indirect signatures
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 740
EP  - 782
VL  - 13
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.05.001
LA  - en
ID  - CRPHYS_2012__13_6-7_740_0
ER  - 
%0 Journal Article
%A Julien Lavalle
%A Pierre Salati
%T Dark matter indirect signatures
%J Comptes Rendus. Physique
%D 2012
%P 740-782
%V 13
%N 6-7
%I Elsevier
%R 10.1016/j.crhy.2012.05.001
%G en
%F CRPHYS_2012__13_6-7_740_0
Julien Lavalle; Pierre Salati. Dark matter indirect signatures. Comptes Rendus. Physique, Volume 13 (2012) no. 6-7, pp. 740-782. doi : 10.1016/j.crhy.2012.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.05.001/

[1] J. Silk Dark Matter: the astrophysical case, C. R. Physique, Volume 13 (2012), p. 724 (in this issue)

[2] T. Tait; D. Hooper Theories of particle dark matter, C. R. Physique, Volume 13 (2012), p. 719 (in this issue)

[3] E. Armengaud Direct detection of WIMPs, C. R. Physique, Volume 13 (2012), p. 730 (in this issue)

[4] F. Casse; M. Lemoine; G. Pelletier Phys. Rev. D, 65 (2002), p. 023002 | arXiv

[5] D. Maurin et al. Galactic cosmic ray nuclei as a tool for astroparticle physics | arXiv

[6] R.D. Ekers; R. Sancisi Astron. Astrophys., 54 (1977), pp. 973-974

[7] A.W. Strong; I.V. Moskalenko Astrophys. J., 509 (1998), p. 212 | arXiv

[8] http://galprop.stanford.edu/ (See the web site and references therein)

[9] http://www.desy.de/maccione/DRAGON/ (See the web site and references therein)

[10] D. Maurin et al. Cosmic rays below Z=30 in a diffusion model: new constraints on propagation parameters, Astrophys. J., Volume 555 (2001), p. 585 | arXiv

[11] F. Donato et al. Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D, Volume 69 (2004), p. 063501 | arXiv

[12] A. Putze; L. Derome; D. Maurin Astron. Astrophys., 516 (2010), p. A66 | arXiv

[13] L.C. Tan; L.K. Ng J. Phys. G, 9 (1983), p. 1289

[14] T. Bringmann; P. Salati Phys. Rev. D, 75 (2007), p. 083006 | arXiv

[15] L.C. Tan; L.K. Ng Phys. Rev. D, 26 (1982), p. 1179

[16] L.C. Tan; L.K. Ng J. Phys. G, 9 (1983), p. 227

[17] L. Bergström; J. Edsjö; P. Ullio Astrophys. J., 526 (1999), p. 215 | arXiv

[18] E.W. Anderson et al. Phys. Rev. Lett., 19 (1967), p. 198

[19] R. Duperray et al. Flux of light antimatter nuclei near Earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D, Volume 71 (2005), p. 083013 | arXiv

[20] F. Donato; N. Fornengo; D. Maurin Phys. Rev. D, 78 (2008), p. 043506 | arXiv

[21] F. Donato et al. Anti-protons from spallations of cosmic rays on interstellar matter, Astrophys. J., Volume 563 (2001), p. 172 | arXiv

[22] K. Agashe; G. Servant Phys. Rev. Lett., 93 (2004), p. 231805 | arXiv

[23] K. Agashe; G. Servant JCAP, 0502 (2005), p. 002 | arXiv

[24] A. Barrau et al. Kaluza–Klein dark matter and Galactic antiprotons, Phys. Rev. D, Volume 72 (2005), p. 063507 | arXiv

[25] O. Adriani et al. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett., Volume 105 (2010), p. 121101 | arXiv

[26] J.F. Navarro; C.S. Frenk; S.D.M. White Astrophys. J., 490 (1997), p. 493 | arXiv

[27] B. Moore et al. Dark matter substructure within galactic halos, Astrophys. J., Volume 524 (1999), p. L19

[28] J. Navarro et al. The inner structure of LambdaCDM halos III: universality and asymptotic slopes, Mon. Not. Roy. Astron. Soc., Volume 349 (2004), p. 1039 | arXiv

[29] J. Diemand; B. Moore; J. Stadel Mon. Not. Roy. Astron. Soc., 353 (2004), p. 624 | arXiv

[30] G. Gentile et al. The cored distribution of dark matter in spiral galaxies, Mon. Not. Roy. Astron. Soc., Volume 351 (2004), p. 903 | arXiv

[31] F. Donato; P. Salucci Mon. Not. Roy. Astron. Soc., 353 (2004), p. L17-L22 | arXiv

[32] R. Catena; P. Ullio A novel determination of the local dark matter density, JCAP, Volume 1008 (2010), p. 004 | arXiv | DOI

[33] P. Salucci; F. Nesti; G. Gentile; C. Frigerio Martins The dark matter density at the Sunʼs location, Astron. Astrophys., Volume 523 (2010), p. 83 | arXiv | DOI

[34] P.J. McMillan Mass models of the Milky Way, MNRAS, Volume 414 (2011), pp. 2446-2457 | arXiv | DOI

[35] J. Bovy; S. Tremaine On the local dark matter density | arXiv

[36] J.N. Bahcall; R.M. Soneira Astrophys. J. Suppl., 44 (1980), p. 73

[37] Z. Ahmed et al. Dark matter search results from the CDMS II experiment, Science, Volume 327 (2010), pp. 1619-1621 | arXiv

[38] C.E. Aalseth et al. Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett., Volume 106 (2011), p. 131301 | arXiv

[39] J. Lavalle Phys. Rev. D, 82 (2010), p. 081302 | arXiv

[40] D. Cerdeno; T. Delahaye; J. Lavalle Nuclear Phys. B, 854 (2012), pp. 738-779 | arXiv

[41] P. Ullio JHEP, 0106 (2001), p. 053 | arXiv

[42] S. Profumo; C.E. Yaguna Phys. Rev. D, 70 (2004), p. 095004 | arXiv

[43] J. Hisano; S. Matsumoto; M.M. Nojiri; J. Hisano et al. Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. Lett., Volume 92 (2004), p. 031303 (See also Phys. Rev. D, 71, 2005, pp. 063528) | arXiv

[44] O. Adriani et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature, Volume 458 (2009), pp. 607-609 | arXiv

[45] I.V. Moskalenko; A.W. Strong Astrophys. J., 493 (1998), pp. 694-707 | arXiv

[46] E.A. Baltz; J. Edsjö Phys. Rev. D, 59 (1999), p. 023511 | arXiv

[47] T. Delahaye et al. Positrons from dark matter annihilation in the galactic halo: theoretical uncertainties, Phys. Rev. D, Volume 77 (2008), p. 063527 | arXiv

[48] G.D. Badhwar; S.A. Stephens; R.L. Golden Phys. Rev. D, 15 (1977), p. 820

[49] T. Kamae et al. Parameterization of γ, e± and neutrino spectra produced by p–p interaction in astronomical environment, Astrophys. J., Volume 647 (2006), p. 692 | arXiv

[50] J. Chang et al. An excess of cosmic ray electrons at energies of 300.800 GeV, Nature, Volume 456 (2008), pp. 362-365

[51] F. Aharonian et al. The energy spectrum of cosmic-ray electrons at TeV energies, Phys. Rev. Lett., Volume 101 (2008), p. 261104 | arXiv

[52] F. Aharonian et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys., Volume 508 (2009), p. 561 | arXiv

[53] A.A. Abdo et al. Measurement of the Cosmic Ray e+ plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett., Volume 102 (2009), p. 181101 | arXiv

[54] D. Grasso et al. On possible interpretations of the high energy electron–positron spectrum measured by the Fermi Large Area Telescope, Astropart. Phys., Volume 32 (2009), pp. 140-151 | arXiv

[55] T. Delahaye et al. Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes, Astron. Astrophys., Volume 524 (2010), p. A51 | arXiv

[56] A.W. Strong; I.V. Moskalenko; O. Reimer Astrophys. J., 613 (2004), pp. 962-976 | arXiv

[57] T. Delahaye et al. Galactic secondary positron flux at the Earth, Astron. Astrophys., Volume 501 (2009), pp. 821-833 | arXiv

[58] O. Adriani et al. PAMELA measurements of cosmic-ray proton and helium spectra, Science, Volume 332 (2011), pp. 69-72 | arXiv

[59] T. Delahaye et al. Systematic effects in the estimate of the local gamma-ray emissivity | arXiv

[60] M. Aguilar; et al.; M. Aguilar et al. The Alpha magnetic spectrometer (AMS) on the international space station. I: Results from the test flight on the space shuttle, Phys. Rept., Volume 366 (2002), p. 331 (Erratum)

[61] J. Lavalle Mon. Not. Roy. Astron. Soc., 414 (2011), p. 985L | arXiv

[62] E. Komatsu et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl., Volume 192 (2011), p. 18 | arXiv

[63] F. Donato et al. Constraints on WIMP Dark Matter from the High Energy PAMELA p¯/p data, Phys. Rev. Lett., Volume 102 (2009), p. 071301 | arXiv

[64] P. Salati Phys. Lett. B, 571 (2003), pp. 121-131 | arXiv

[65] S. Profumo; P. Ullio JCAP, 0311 (2003), p. 006 | arXiv

[66] G. Kane; R. Lu; S. Watson Phys. Lett. B, 681 (2009), pp. 151-160 | arXiv

[67] M. Cirelli; R. Franceschini; A. Strumia Nuclear Phys. B, 800 (2008), pp. 204-220 | arXiv

[68] N. Arkani-Hamed et al. A theory of Dark Matter, Phys. Rev. D, Volume 79 (2009), p. 015014 | arXiv

[69] M. Pospelov; A. Ritz Phys. Lett. B, 671 (2009), pp. 391-397 | arXiv

[70] M. Pospelov; A. Ritz; M.B. Voloshin Phys. Lett. B, 662 (2008), pp. 53-61 | arXiv

[71] M. Lattanzi; J. Silk Phys. Rev. D, 79 (2009), p. 083523 | arXiv

[72] M. Cirelli et al. Model-independent implications of the e±, anti-proton cosmic ray spectra on properties of Dark Matter, Nuclear Phys. B, Volume 813 (2009), pp. 1-21 | arXiv

[73] O. Adriani et al. A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett., Volume 102 (2009), p. 051101 | arXiv

[74] E. Borriello; A. Cuoco; G. Miele Astrophys. J., 699 (2009), p. L59-L63 | arXiv

[75] G. Bertone et al. Gamma-ray and radio tests of the e+e excess from DM annihilations, JCAP, Volume 0903 (2009), p. 009 | arXiv

[76] L. Bergstrom et al. Gamma-ray and radio constraints of high positron rate dark matter models annihilating into new light particles, Phys. Rev. D, Volume 79 (2009), p. 081303 | arXiv

[77] P. Meade et al. Dark matter interpretations of the e± excesses after FERMI, Nuclear Phys. B, Volume 831 (2010), pp. 178-203 | arXiv

[78] M. Cirelli; P. Panci; P.D. Serpico Nuclear Phys. B, 840 (2010), pp. 284-303 | arXiv

[79] S. Galli et al. Updated CMB constraints on Dark Matter annihilation cross-sections, Phys. Rev. D, Volume 84 (2011), p. 027302 | arXiv

[80] T.R. Slatyer; N. Padmanabhan; D.P. Finkbeiner Phys. Rev. D, 80 (2009), p. 043526 | arXiv

[81] J. Lavalle et al. Clumpiness of dark matter and positron annihilation signal: computing the odds of the Galactic lottery, Astron. Astrophys., Volume 462 (2007), pp. 827-848 | arXiv

[82] J. Lavalle et al. Full calculation of clumpiness boost factors for antimatter cosmic rays in the light of Lambda-CDM N-body simulation results. Abandoning hope in clumpiness enhancement?, Astron. Astrophys., Volume 479 (2008), pp. 427-452 | arXiv

[83] D.T. Cumberbatch; J. Silk Mon. Not. Roy. Astron. Soc., 374 (2007), pp. 455-465 | arXiv

[84] D. Hooper; A. Stebbins; K.M. Zurek Phys. Rev. D, 79 (2009), p. 103513 | arXiv

[85] P. Brun et al. The cosmic ray lepton puzzle in the light of cosmological N-body simulations, Phys. Rev. D, Volume 80 (2009), p. 035023 | arXiv

[86] J. Diemand et al. Clumps and streams in the local dark matter distribution, Nature, Volume 454 (2008), pp. 735-738 | arXiv

[87] A. Ibarra; D. Tran JCAP, 0902 (2009), p. 021 | arXiv

[88] A. Ibarra et al. Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP, Volume 0908 (2009), p. 017 | arXiv

[89] M. Garny et al. Gamma-ray lines from radiative dark matter decay, JCAP, Volume 1101 (2011), p. 032 | arXiv

[90] C.-R. Chen et al. Decaying hidden gauge boson and the PAMELA and ATIC/PPB-BETS anomalies, Progr. Theoret. Phys., Volume 122 (2009), pp. 553-559 | arXiv

[91] S. Profumo Central Eur. J. Phys., 10 (2011), pp. 1-31 | arXiv

[92] P. Chardonnet; J. Orloff; P. Salati Phys. Lett. B, 409 (1997), pp. 313-320 | arXiv

[93] F. Donato; N. Fornengo; P. Salati Phys. Rev. D, 62 (2000), p. 043003 | arXiv

[94] M.A. Braun; V.V. Vechernin Sov. J. Nucl. Phys., 36 (1982), p. 357

[95] V. Choutko, F. Giovacchini, on behalf of the AMS Collaboration, in: Proceedings of the 30th International Cosmic Ray Conference, vol. 4 (HE part 1), 2008, pp. 765–768.

[96] C.J. Hailey et al. Development of the gaseous antiparticle spectrometer for space-based antimatter detection, Nucl. Instrum. Meth. B, Volume 214 (2004), pp. 122-125 | arXiv

[97] C.J. Hailey et al. Accelerator testing of the general antiparticle spectrometer, a novel approach to indirect dark matter detection, JCAP, Volume 0601 (2006), p. 007 | arXiv

[98] J.E. Koglin et al. Antideuterons as an indirect dark matter signature: Design and preparation for a balloon-borne GAPS experiment, J. Phys. Conf. Ser., Volume 120 (2008), p. 042011

[99] M. Kadastik; M. Raidal; A. Strumia Phys. Lett. B, 683 (2010), pp. 248-254 | arXiv

[100] Y. Cui; J.D. Mason; L. Randall JHEP, 1011 (2010), p. 017 | arXiv

[101] N. Fornengo; L. Pieri; S. Scopel Phys. Rev. D, 70 (2004), p. 103529 | arXiv

[102] J. Hisano; S. Matsumoto; M.M. Nojiri Phys. Rev. D, 67 (2003), p. 075014 | arXiv

[103] L. Bergström Phys. Lett. B, 225 (1989), p. 372

[104] J.F. Beacom; N.F. Bell; G. Bertone Phys. Rev. Lett., 94 (2005), p. 171301 | arXiv

[105] L. Bergström et al. Gamma rays from Kaluza–Klein dark matter, Phys. Rev. Lett., Volume 94 (2005), p. 131301 | arXiv

[106] A. Birkedal et al. Robust gamma ray signature of WIMP dark matter | arXiv

[107] L. Bergström et al. Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett., Volume 95 (2005), p. 241301 | arXiv

[108] G.R. Blumenthal; R.J. Gould Rev. Modern Phys., 42 (1970), pp. 237-270

[109] L. Roszkowski et al. On prospects for dark matter indirect detection in the constrained MSSM, Phys. Lett. B, Volume 671 (2009), pp. 10-14 | arXiv

[110] http://www-glast.stanford.edu/ (See the web site and references therein)

[111] M.J. Ryan; J.F. Ormes; V.K. Balasubrahmanyan Phys. Rev. Lett., 28 (1972), p. 985

[112] T. Delahaye et al. The GeV–TeV galactic gamma-ray diffuse emission I. Uncertainties in the predictions of the hadronic component, Astron. Astrophys., Volume 531 (2011), p. A37 | arXiv

[113] P. Sreekumar et al. EGRET observations of the extragalactic gamma ray emission, Astrophys. J., Volume 494 (1998), p. 523

[114] F. Aharonian; et al.; HESS Collaboration Very high energy gamma rays from the direction of Sagittarius A, Astron. Astrophys., Volume 425 (2004), p. L13 | arXiv

[115] F. Aharonian; et al.; HESS Collaboration Discovery of very-high-energy gamma rays from the galactic centre ridge, Nature, Volume 439 (2006), p. 695 | arXiv

[116] L. Bergström; T. Bringmann; J. Edsjö Complementarity of direct dark matter detection and indirect detection through gamma rays, Phys. Rev. D, Volume 83 (2011) no. 4, p. 045024 | arXiv | DOI

[117] H.A. Mayer-Hasselwander et al. High-energy gamma-ray emission from the Galactic Center, Astron. Astrophys., Volume 335 (1998), pp. 161-172

[118] A. Cesarini; F. Fucito; A. Lionetto; A. Morselli; P. Ullio The Galactic center as a dark matter gamma-ray source, Astropart. Phys., Volume 21 (2004), pp. 267-285 | arXiv | DOI

[119] G.R. Blumenthal; S.M. Faber; R. Flores; J.R. Primack Contraction of dark matter galactic halos due to baryonic infall, Astrophys. J., Volume 301 (1986), pp. 27-34 | DOI

[120] P. Gondolo; J. Silk Dark matter annihilation at the galactic center, Phys. Rev. Lett., Volume 83 (1999), pp. 1719-1722 | arXiv | DOI

[121] O.Y. Gnedin; A.V. Kravtsov; A.A. Klypin; D. Nagai Response of dark matter halos to condensation of baryons: cosmological simulations and improved adiabatic contraction model, Astrophys. J., Volume 616 (2004), pp. 16-26 | arXiv | DOI

[122] F. Governato; C. Brook; L. Mayer; A. Brooks; G. Rhee; J. Wadsley; P. Jonsson; B. Willman; G. Stinson; T. Quinn; P. Madau Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature, Volume 463 (2010), pp. 203-206 | DOI

[123] F. Aharonian et al. Very high energy gamma rays from the direction of Sagittarius A, Astron. Astrophys., Volume 425 (2004), p. L13-L17 | arXiv | DOI

[124] L. Bergström; T. Bringmann; M. Eriksson; M. Gustafsson Gamma Rays from Kaluza–Klein Dark Matter, Phys. Rev. Lett., Volume 94 (2005) no. 13, p. 131301 | arXiv | DOI

[125] L. Bergström; T. Bringmann; M. Eriksson; M. Gustafsson Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett., Volume 95 (2005) no. 24, p. 241301 | arXiv | DOI

[126] J. Hisano; S. Matsumoto; M.M. Nojiri; O. Saito Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center, Phys. Rev. D, Volume 71 (2005) no. 6, p. 063528 | arXiv | DOI

[127] J.L. Feng; M. Kaplinghat; H.-B. Yu Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett., Volume 104 (2010) no. 15, p. 151301 | arXiv | DOI

[128] F. Aharonian; A. Neronov High-energy gamma rays from the massive black hole in the galactic center, Astrophys. J., Volume 619 (2005), pp. 306-313 | arXiv | DOI

[129] M. Chernyakova; D. Malyshev; F.A. Aharonian; R.M. Crocker; D.I. Jones The high-energy, arcminute-scale galactic center gamma-ray source, Astrophys. J., Volume 726 (2011), p. 60 | arXiv | DOI

[130] G. Bertone; M. Cirelli; A. Strumia; M. Taoso Gamma-ray and radio tests of the e± excess from DM annihilations, J. Cosmol. Astropart. Phys., Volume 3 (2009), p. 9 | arXiv | DOI

[131] K.N. Abazajian; P. Agrawal; Z. Chacko; C. Kilic Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum, JCAP, Volume 1011 (2010), p. 41 | arXiv | DOI

[132] D. Hooper; L. Goodenough Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B, Volume 697 (2011), pp. 412-428 | arXiv | DOI

[133] D. Hooper; T. Linden Origin of the gamma rays from the Galactic Center, Phys. Rev. D, Volume 84 (2011) no. 12, p. 123005 | arXiv | DOI

[134] A. Boyarsky; D. Malyshev; O. Ruchayskiy A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B, Volume 705 (2011), pp. 165-169 | arXiv | DOI

[135] M. Su; T.R. Slatyer; D.P. Finkbeiner Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind?, Astrophys. J., Volume 724 (2010), pp. 1044-1082 | arXiv | DOI

[136] R.M. Crocker; F. Aharonian Fermi bubbles: giant, multibillion-year-old reservoirs of galactic center cosmic rays, Phys. Rev. Lett., Volume 106 (2011) no. 10, p. 101102 | arXiv | DOI

[137] P. Mertsch; S. Sarkar Fermi gamma-ray “bubbles” from stochastic acceleration of electrons, Phys. Rev. Lett., Volume 107 (2011) no. 9, p. 091101 | arXiv | DOI

[138] L. Pieri; J. Lavalle; G. Bertone; E. Branchini Implications of high-resolution simulations on indirect dark matter searches, Phys. Rev. D, Volume 83 (2011) no. 2, p. 023518 | arXiv | DOI

[139] J. Knödlseder; P. Jean; V. Lonjou; G. Weidenspointner; N. Guessoum; W. Gillard; G. Skinner; P. von Ballmoos; G. Vedrenne; J. Roques; S. Schanne; B. Teegarden; V. Schönfelder; C. Winkler The all-sky distribution of 511 keV electron–positron annihilation emission, Astron. Astrophys., Volume 441 (2005), pp. 513-532 | arXiv | DOI

[140] C. Boehm; D. Hooper; J. Silk; M. Casse; J. Paul MeV dark matter: Has it been detected?, Phys. Rev. Lett., Volume 92 (2004) no. 10, p. 101301 | arXiv | DOI

[141] N. Prantzos; C. Boehm; A.M. Bykov; R. Diehl; K. Ferrière; N. Guessoum; P. Jean; J. Knoedlseder; A. Marcowith; I.V. Moskalenko; A. Strong; G. Weidenspointner The 511 keV emission from positron annihilation in the Galaxy, Rev. Modern Phys., Volume 83 (2011), pp. 1001-1056 | arXiv | DOI

[142] A.A. Abdo et al. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes, Phys. Rev. Lett., Volume 103 (2009) no. 25, p. 251101 | DOI

[143] The Fermi-LAT Collaboration Fermi-LAT observations of the diffuse gamma-ray emission: Implications for cosmic rays and the interstellar medium | arXiv

[144] T. Delahaye; A. Fiasson; M. Pohl; P. Salati The GeV–TeV galactic gamma-ray diffuse emission. I. Uncertainties in the predictions of the hadronic component, Astron. Astrophys., Volume 531 (2011), p. A37 | arXiv | DOI

[145] K.N. Abazajian; S. Blanchet; J.P. Harding Contribution of blazars to the extragalactic diffuse gamma-ray background and their future spatial resolution, Phys. Rev. D, Volume 84 (2011) no. 10, p. 103007 | arXiv | DOI

[146] L. Bergström; H. Snellman Observable monochromatic photons from cosmic photino annihilation, Phys. Rev. D, Volume 37 (1988), pp. 3737-3741 | DOI

[147] A. Bouquet; P. Salati; J. Silk Gamma-ray lines as a probe for a cold-dark-matter halo, Phys. Rev. D, Volume 40 (1989), pp. 3168-3186 | DOI

[148] L. Bergström; J. Kaplan Gamma ray lines from TeV dark matter, Astropart. Phys., Volume 2 (1994), pp. 261-268 | arXiv | DOI

[149] J.F. Beacom; N.F. Bell; G. Bertone Gamma-ray constraint on galactic positron production by MeV dark matter, Phys. Rev. Lett., Volume 94 (2005) no. 17, p. 171301 | arXiv | DOI

[150] T. Bringmann; L. Bergström; J. Edsjö New gamma-ray contributions to supersymmetric dark matter annihilation, J. High Energy Phys., Volume 1 (2008), p. 49 | arXiv | DOI

[151] A.A. Abdo et al. Fermi large area telescope search for photon lines from 30 to 200 GeV and dark matter implications, Phys. Rev. Lett., Volume 104 (2010) no. 9, p. 091302 | arXiv | DOI

[152] G. Vertongen; C. Weniger Hunting dark matter gamma-ray lines with the Fermi LAT, J. Cosmol. Astropart. Phys., Volume 1105 (2011), p. 27 | arXiv | DOI

[153] J. Goodman; M. Ibe; A. Rajaraman; W. Shepherd; T.M.P. Tait; H.-B. Yu Gamma ray line constraints on effective theories of dark matter, Nuclear Phys. B, Volume 844 (2011), pp. 55-68 | arXiv | DOI

[154] T. Bringmann; X. Huang; A. Ibarra; S. Vogl; C. Weniger Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation | arXiv

[155] A. Geringer-Sameth; S.M. Koushiappas Exclusion of canonical weakly Interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi gamma-ray space telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24, p. 241303 | arXiv | DOI

[156] A.A. Abdo et al. Fermi LAT observation of diffuse gamma rays produced through interactions between local interstellar matter and high-energy cosmic rays, Astrophys. J., Volume 703 (2009), pp. 1249-1256 | arXiv | DOI

[157] A.A. Abdo et al. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi large area telescope data, Phys. Rev. Lett., Volume 104 (2010) no. 10, p. 101101 | arXiv | DOI

[158] A.A. Abdo et al. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement, JCAP, Volume 1004 (2010), p. 14 | arXiv | DOI

[159] K.N. Abazajian; S. Blanchet; J.P. Harding Current and future constraints on dark matter from prompt and inverse-Compton photon emission in the isotropic diffuse gamma-ray background, Phys. Rev. D, Volume 85 (2012) no. 4, p. 043509 | arXiv | DOI

[160] C. Arina; M.H.G. Tytgat Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission, JCAP, Volume 1101 (2011), p. 11 | arXiv | DOI

[161] P.D. Serpico; E. Sefusatti; M. Gustafsson; G. Zaharijas Extragalactic gamma-ray signal from dark matter annihilation: a power spectrum based computation, Mon. Not. Roy. Astron. Soc., Volume 421 (2012), p. L87-L91 | arXiv | DOI

[162] A.A. Abdo et al. Observations of Milky Way dwarf spheroidal galaxies with the Fermi large area telescope detector and constraints on dark matter models, Astrophys. J., Volume 712 (2010), pp. 147-158 | arXiv | DOI

[163] M. Ackermann et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi large area telescope, Phys. Rev. Lett., Volume 107 (2011) no. 24, p. 241302 | arXiv | DOI

[164] A. Abramowski et al. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S, Phys. Rev. Lett., Volume 106 (2011) no. 16, p. 161301 | arXiv | DOI

[165] K.N. Abazajian; J.P. Harding Constraints on WIMP and Sommerfeld-enhanced dark matter annihilation from HESS observations of the galactic center, JCAP, Volume 1201 (2012), p. 41 | arXiv | DOI

[166] P. Meade; M. Papucci; T. Volansky Dark matter sees the light, J. High Energy Phys., Volume 0912 (2009), p. 52 | arXiv | DOI

[167] M. Papucci; A. Strumia Robust implications on dark matter from the first FERMI sky γ map, JCAP, Volume 1003 (2010), p. 14 | arXiv | DOI

[168] A. Charbonnier; C. Combet; M. Daniel; S. Funk; J.A. Hinton; D. Maurin; C. Power; J.I. Read; S. Sarkar; M.G. Walker; M.I. Wilkinson Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ-ray observatories – I. The classical dwarf spheroidal galaxies, Mon. Not. R. Astron. Soc. Lett., Volume 418 (2011), pp. 1526-1556 | arXiv | DOI

[169] M.G. Walker; C. Combet; J.A. Hinton; D. Maurin; M.I. Wilkinson Dark matter in the classical dwarf spheroidal galaxies: a robust constraint on the astrophysical factor for γ-ray flux calculations, Astrophys. J. Lett., Volume 733 (2011), p. L46 | arXiv | DOI

[170] J. Albert et al. Upper limit for γ-ray emission above 140 GeV from the dwarf spheroidal galaxy draco, Astrophys. J., Volume 679 (2008), pp. 428-431 | arXiv | DOI

[171] V.A. Acciari et al. VERITAS search for VHE gamma-ray emission from dwarf spheroidal galaxies, Astrophys. J., Volume 720 (2010), pp. 1174-1180 | arXiv | DOI

[172] A. Abramowski et al. H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies, Astropart. Phys., Volume 34 (2011), pp. 608-616 | arXiv | DOI

[173] I. Cholis; P. Salucci Extracting limits on Dark Matter annihilation from dwarf spheroidal galaxies at gamma-rays | arXiv

[174] E.A. Baltz; C. Briot; P. Salati; R. Taillet; J. Silk Detection of neutralino annihilation photons from external galaxies, Phys. Rev. D, Volume 61 (1999) no. 2, p. 023514 | arXiv | DOI

[175] A. Falvard; E. Giraud; A. Jacholkowska; J. Lavalle; E. Nuss; F. Piron; M. Sapinski; P. Salati; R. Taillet; K. Jedamzik; G. Moultaka Supersymmetric dark matter in M31: can one see neutralino annihilation with CELESTE?, Astropart. Phys., Volume 20 (2004), pp. 467-484 | arXiv | DOI

[176] N. Fornengo; L. Pieri; S. Scopel Neutralino annihilation into γ rays in the Milky Way and in external galaxies, Phys. Rev. D, Volume 70 (2004) no. 10, p. 103529 | arXiv | DOI

[177] F.A. Aharonian et al. Search for TeV gamma ray emission from the Andromeda galaxy, Astron. Astrophys., Volume 400 (2003), pp. 153-159 | arXiv | DOI

[178] J. Lavalle et al. Indirect search for dark matter in M 31 with the CELESTE experiment, Astron. Astrophys., Volume 450 (2006), pp. 1-8 | arXiv | DOI

[179] M. Wood et al. A search for dark matter annihilation with the Whipple 10 m telescope, Astrophys. J., Volume 678 (2008), pp. 594-605 | arXiv | DOI

[180] F. Aharonian et al. Fast variability of tera-electron volt γ rays from the radio galaxy M87, Science, Volume 314 (2006), pp. 1424-1427 | arXiv | DOI

[181] E. Aliu et al. VERITAS observations of day-scale flaring of M 87 in 2010 April, Astrophys. J., Volume 746 (2012), p. 141 | arXiv | DOI

[182] J. Aleksić et al. Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes, Astron. Astrophys., Volume 539 (2012), p. L2 | arXiv | DOI

[183] A.A. Abdo et al. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33, Astron. Astrophys., Volume 523 (2010), p. L2 | arXiv | DOI

[184] A.A. Abdo et al. Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT, Astron. Astrophys., Volume 523 (2010), p. A46 | DOI

[185] A.A. Abdo et al. Observations of the Large Magellanic Cloud with Fermi, Astron. Astrophys., Volume 512 (2010), p. A7 | DOI

[186] S. Colafrancesco; S. Profumo; P. Ullio Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster, Astron. Astrophys., Volume 455 (2006), pp. 21-43 | arXiv | DOI

[187] A. Pinzke; C. Pfrommer; L. Bergström Prospects of detecting gamma-ray emission from galaxy clusters: Cosmic rays and dark matter annihilations, Phys. Rev. D, Volume 84 (2011) no. 12, p. 123509 | arXiv | DOI

[188] M.A. Sánchez-Conde; M. Cannoni; F. Zandanel; M.E. Gómez; F. Prada Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?, JCAP, Volume 1112 (2011), p. 11 | arXiv | DOI

[189] X. Huang; G. Vertongen; C. Weniger Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters, JCAP, Volume 1201 (2012), p. 42 | arXiv | DOI

[190] C. Combet; D. Maurin; E. Nezri; E. Pointecouteau; J.A. Hinton; R. White Decaying dark matter: Stacking analysis of galaxy clusters to improve on current limits, Phys. Rev. D, Volume 85 (2012) no. 6, p. 063517 | arXiv | DOI

[191] E. Nezri; R. White; C. Combet; J.A. Hinton; D. Maurin; E. Pointecouteau Gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis | arXiv

[192] D. Maurin; C. Combet; E. Nezri; E. Pointecouteau Disentangling cosmic-ray and dark matter induced gamma-rays in galaxy clusters? | arXiv

[193] M. Ackermann et al. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope, JCAP, Volume 1005 (2010), p. 25 | arXiv | DOI

[194] The Fermi-LAT Collaboration A combined analysis of clusters of galaxies — gamma-ray emission from cosmic rays and dark matter | arXiv

[195] J. Han; C.S. Frenk; V.R. Eke; L. Gao; S.D.M. White Evidence for extended gamma-ray emission from galaxy clusters | arXiv

[196] A. Pinzke; C. Pfrommer Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution, Mon. Not. R. Astron. Soc. Lett., Volume 409 (2010), pp. 449-480 | arXiv | DOI

[197] W.H. Press; D.N. Spergel Capture by the Sun of a galactic population of weakly interacting, massive particles, Astrophys. J., Volume 296 (1985), pp. 679-684 | DOI

[198] J. Silk; K. Olive; M. Srednicki The photino, the Sun, and high-energy neutrinos, Phys. Rev. Lett., Volume 55 (1985), pp. 257-259 | DOI

[199] K. Freese Can scalar neutrinos or massive Dirac neutrinos be the missing mass?, Phys. Lett. B, Volume 167 (1986), pp. 295-300 | DOI

[200] L.M. Krauss; M. Srednicki; F. Wilczek Solar System constraints and signatures for dark-matter candidates, Phys. Rev. D, Volume 33 (1986), pp. 2079-2083 | DOI

[201] T.K. Gaisser; G. Steigman; S. Tilav Limits on cold-dark-matter candidates from deep underground detectors, Phys. Rev. D, Volume 34 (1986), pp. 2206-2222 | DOI

[202] G.D. Barr; T.K. Gaisser; P. Lipari; S. Robbins; T. Stanev Three-dimensional calculation of atmospheric neutrinos, Phys. Rev. D, Volume 70 (2004) no. 2, p. 023006 | arXiv | DOI

[203] M. Honda; T. Kajita; K. Kasahara; S. Midorikawa Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D, Volume 83 (2011) no. 12, p. 123001 | arXiv | DOI

[204] J. Carr; F. Cohen; D. Dornic; F. Jouvenot; G. Maurin; C. Naumann; The KM3NeT Consortium Detector design studies for a cubic kilometer Deep Sea neutrino telescope KM3NeT, J. Phys. Conf. Ser., Volume 136 (2008) no. 4, p. 042063 | arXiv | DOI

[205] F. Halzen; S.R. Klein Invited review article: IceCube: An instrument for neutrino astronomy, Rev. Sci. Instrum., Volume 81 (2010) no. 8, p. 081101 | arXiv | DOI

[206] B. Pontecorvo Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP, Volume 26 (1968), p. 984

[207] A. Strumia, F. Vissani, Neutrino masses and mixings and…, . | arXiv

[208] M.C. Gonzalez-Garcia; M. Maltoni Phenomenology with massive neutrinos, Phys. Rept., Volume 460 (2008), pp. 1-129 | arXiv | DOI

[209] J.K. Becker High-energy neutrinos in the context of multimessenger astrophysics, Phys. Rept., Volume 458 (2008), pp. 173-246 | arXiv | DOI

[210] G. Barenboim; C. Quigg Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D, Volume 67 (2003) no. 7, p. 073024 | arXiv | DOI

[211] L. Wolfenstein Neutrino oscillations in matter, Phys. Rev. D, Volume 17 (1978), pp. 2369-2374 | DOI

[212] S.P. Mikheev; A.I. Smirnov Resonant amplification of neutrino oscillations in matter and solar-neutrino spectroscopy, Nuovo Cimento C Geophys. Space Phys., Volume 9 (1986), pp. 17-26 | DOI

[213] T. Ohlsson; H. Snellman Neutrino oscillations with three flavors in matter: Applications to neutrinos traversing the Earth, Phys. Lett. B, Volume 474 (2000), pp. 153-162 | arXiv | DOI

[214] M. Blennow; J. Edsjö; T. Ohlsson Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach, JCAP, Volume 0801 (2008), p. 21 | arXiv | DOI

[215] M. Cirelli; N. Fornengo; T. Montaruli; I. Sokalski; A. Strumia; F. Vissani Spectra of neutrinos from dark matter annihilations, Nuclear Phys. B, Volume 727 (2005), pp. 99-138 | arXiv | DOI

[216] V. Barger; W.-Y. Keung; G. Shaughnessy; A. Tregre High energy neutrinos from neutralino annihilations in the Sun, Phys. Rev. D, Volume 76 (2007) no. 9, p. 095008 | arXiv | DOI

[217] G. Bertone; E. Nezri; J. Orloff; J. Silk Neutrinos from dark matter annihilations at the galactic center, Phys. Rev. D, Volume 70 (2004) no. 6, p. 063503 | arXiv | DOI

[218] A.E. Erkoca; G. Gelmini; M.H. Reno; I. Sarcevic Muon fluxes and showers from dark matter annihilation in the Galactic center, Phys. Rev. D, Volume 81 (2010) no. 9, p. 096007 | arXiv | DOI

[219] R. Abbasi et al. Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope, Phys. Rev. D, Volume 84 (2011) no. 2, p. 022004 | arXiv | DOI

[220] K. Griest; M. Kamionkowski Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett., Volume 64 (1990), pp. 615-618 | DOI

[221] P. Sandick; D. Spolyar; M. Buckley; K. Freese; D. Hooper Sensitivity of the IceCube neutrino detector to dark matter annihilating in dwarf galaxies, Phys. Rev. D, Volume 81 (2010) no. 8, p. 083506 | arXiv | DOI

[222] K. Griest; D. Seckel Cosmic asymmetry, neutrinos and the Sun, Nuclear Phys. B, Volume 283 (1987), pp. 681-705 | DOI

[223] A. Gould Weakly interacting massive particle distribution in and evaporation from the Sun, Astrophys. J., Volume 321 (1987), pp. 560-570 | DOI

[224] J. Edsjö; P. Gondolo WIMP mass determination with neutrino telescopes, Phys. Lett. B, Volume 357 (1995), pp. 595-601 | arXiv | DOI

[225] A. Bottino; N. Fornengo; G. Mignola; L. Moscoso Signals of neutralino dark matter from Earth and Sun, Astropart. Phys., Volume 3 (1995), pp. 65-75 | arXiv | DOI

[226] V. Berezinsky; A. Bottino; J. Ellis; N. Fornengo; G. Mignola; S. Scopel Searching for relic neutralinos using neutrino telescopes, Astropart. Phys., Volume 5 (1996), pp. 333-352 | arXiv | DOI

[227] J. Edsjö, Aspects of neutrino detection of neutralino dark matter, Ph.D. thesis, Uppsala Univ., . | arXiv

[228] L. Bergström; J. Edsjö; P. Gondolo Indirect detection of dark matter in km-size neutrino telescopes, Phys. Rev. D, Volume 58 (1998) no. 10, p. 103519 | arXiv | DOI

[229] P. Gondolo; J. Edsjö; P. Ullio; L. Bergström; M. Schelke; E.A. Baltz DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP, Volume 0407 (2004), p. 8 | arXiv | DOI

[230] F. Halzen; D. Hooper Prospects for detecting dark matter with neutrino telescopes in light of recent results from direct detection experiments, Phys. Rev. D, Volume 73 (2006) no. 12, p. 123507 | arXiv | DOI

[231] V. Niro; A. Bottino; N. Fornengo; S. Scopel Investigating light neutralinos at neutrino telescopes, Phys. Rev. D, Volume 80 (2009) no. 9, p. 095019 | arXiv | DOI

[232] J.L. Feng; J. Kumar; J. Learned; L.E. Strigari Testing the Dark Matter interpretation of the DAMA/LIBRA result with Super-Kamiokande, JCAP, Volume 0901 (2009), p. 32 | arXiv | DOI

[233] R. Kappl; M.W. Winkler New limits on dark matter from Super-Kamiokande, Nuclear Phys. B, Volume 850 (2011), pp. 505-521 | arXiv | DOI

[234] N. Fornengo; V. Niro Downward-going tau neutrinos as a new prospect of detecting dark matter, J. High Energy Phys., Volume 1111 (2011), p. 133 | arXiv | DOI

[235] G. Jungman; M. Kamionkowski; K. Griest Supersymmetric dark matter, Phys. Rept., Volume 267 (1996), pp. 195-373 | arXiv | DOI

[236] A. Gould Resonant enhancements in weakly interacting massive particle capture by the Earth, Astrophys. J., Volume 321 (1987), pp. 571-585 | DOI

[237] J.D. Lewin; P.F. Smith Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys., Volume 6 (1996), pp. 87-112 | DOI

[238] M.T. Ressell; D.J. Dean Spin-dependent neutralino-nucleus scattering for Ã127 nuclei, Phys. Rev. C, Volume 56 (1997), pp. 535-546 | arXiv | DOI

[239] A. Gould Direct and indirect capture of weakly interacting massive particles by the Earth, Astrophys. J., Volume 328 (1988), pp. 919-939 | DOI

[240] F. Ling Is the dark disc contribution to dark matter signals important?, Phys. Rev. D, Volume 82 (2010) no. 2, p. 023534 | arXiv | DOI

[241] J. Ellis; K.A. Olive; C. Savage Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D, Volume 77 (2008) no. 6, p. 065026 | arXiv | DOI

[242] J.L. Feng; K.T. Matchev; F. Wilczek Prospects for indirect detection of neutralino dark matter, Phys. Rev. D, Volume 63 (2001) no. 4, p. 045024 | arXiv | DOI

[243] V. Bertin; E. Nezri; J. Orloff Neutrino indirect detection of neutralino dark matter in the CMSSM, Eur. Phys. J. C, Volume 26 (2002), pp. 111-124 | arXiv | DOI

[244] R. Trotta; R. Ruiz de Austri; C. Pérez de los Heros Prospects for dark matter detection with IceCube in the context of the CMSSM, JCAP, Volume 0908 (2009), p. 34 | arXiv | DOI

[245] D. Hooper; G.D. Kribs Probing Kaluza–Klein dark matter with neutrino telescopes, Phys. Rev. D, Volume 67 (2003) no. 5, p. 055003 | arXiv | DOI

[246] M. Blennow; H. Melbéus; T. Ohlsson Neutrinos from Kaluza–Klein dark matter in the Sun, JCAP, Volume 1001 (2010), p. 18 | arXiv | DOI

[247] D. Seckel; T. Stanev; T.K. Gaisser Signatures of cosmic-ray interactions on the solar surface, Astrophys. J., Volume 382 (1991), pp. 652-666 | DOI

[248] G. Ingelman; M. Thunman High energy neutrino production by cosmic ray interactions in the Sun, Phys. Rev. D, Volume 54 (1996), pp. 4385-4392 | arXiv | DOI

[249] T. Tanaka et al. An indirect search for weakly interacting massive particles in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J., Volume 742 (2011), p. 78 | arXiv | DOI

[250] R. Abbasi et al. Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D, Volume 85 (2012) no. 4, p. 042002 | arXiv | DOI

[251] Z. Ahmed et al. Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D, Volume 84 (2011) no. 1, p. 011102 | arXiv | DOI

[252] E. Aprile et al. Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett., Volume 107 (2011) no. 13, p. 131302 | arXiv | DOI

[253] H.S. Lee et al. Limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) Crystal Detectors, Phys. Rev. Lett., Volume 99 (2007) no. 9, p. 091301 | arXiv | DOI

[254] E. Behnke et al. Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber, Phys. Rev. Lett., Volume 106 (2011) no. 2, p. 021303 | arXiv | DOI

[255] R. Bernabei et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C (2008), p. 167 | arXiv | DOI

[256] C.E. Aalseth et al. Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., Volume 106 (2011) no. 13, p. 131301 | arXiv | DOI

[257] S. Archambault et al. Dark matter spin-dependent limits for WIMP interactions on F19 by PICASSO, Phys. Lett. B, Volume 682 (2009), pp. 185-192 | arXiv | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

High-energy gamma-ray sources of cosmological origin

Pierre Brun; Johann Cohen-Tanugi

C. R. Phys (2016)


Theories of particle dark matter

Tim M.P. Tait; Dan Hooper

C. R. Phys (2012)


Direct detection of WIMPs

Eric Armengaud

C. R. Phys (2012)