Comptes Rendus
Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design
[Propriétés colloïdales de solutions de macromolécules biologiques : Applications à la croissance cristalline de lʼurate oxydase]
Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 156-168.

La cristallisation des macromolécules biologiques est gouvernée par un équilibre dʼinteractions faibles, attractives et répulsives. La connaissance des propriétés des solutions, via la mesure du second coefficient du virial, nous permet de choisir les paramètres physico-chimiques qui gouvernent ces potentiels et de contrôler les diagrammes de phases et ainsi croitre des cristaux pour des applications spécifiques de la bio-cristallographie au procédé industriel. Nous avons mis en évidence, avec lʼurate oxydase, un effet salting-in qui augmente sa solubilité ainsi que lʼeffet de déplétion dʼun polymère amphiphile permettant de cristalliser la protéine à une concentration en polymère supérieure à sa cmc. Ces deux effets ont été utilisés pour croître des cristaux pour la diffraction des rayons X sous pression ainsi que pour purifier la protéine par cristallisation.

Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.

Publié le :
DOI : 10.1016/j.crhy.2012.12.005
Keywords: Soluble proteins, Small angle X-ray scattering, Second virial coefficient, Pair potential, Crystallization in solution, Crystal growth
Mot clés : Protéines solubles, Diffusion des rayons X aux petits angles, Second coefficient du viriel, Potentiels de paire, Cristallisation en solution, Croissance cristalline

Françoise Bonneté 1

1 Institut des biomolécules Max-Mousseron, IBMM UMR 5247, faculté des sciences dʼAvignon, 33, rue Louis-Pasteur, 84000 Avignon, France
@article{CRPHYS_2013__14_2-3_156_0,
     author = {Fran\c{c}oise Bonnet\'e},
     title = {Colloidal properties of biomacromolecular solutions: {Towards} urate oxidase crystal design},
     journal = {Comptes Rendus. Physique},
     pages = {156--168},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.12.005},
     language = {en},
}
TY  - JOUR
AU  - Françoise Bonneté
TI  - Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 156
EP  - 168
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.12.005
LA  - en
ID  - CRPHYS_2013__14_2-3_156_0
ER  - 
%0 Journal Article
%A Françoise Bonneté
%T Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design
%J Comptes Rendus. Physique
%D 2013
%P 156-168
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.12.005
%G en
%F CRPHYS_2013__14_2-3_156_0
Françoise Bonneté. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 156-168. doi : 10.1016/j.crhy.2012.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.12.005/

[1] N. Asherie et al. Phase diagram of colloidal solutions, Physical Review Letters, Volume 77 (1996), pp. 4832-4835

[2] P.R. Ten Wolde; D. Frenkel Enhancement of protein crystal nucleation by critical density fluctuations, Science, Volume 277 (1997), pp. 1975-1978

[3] A. Tardieu et al. Proteins in solution: from X-ray scattering intensities to interaction potentials, Journal of Crystal Growth, Volume 196 (1999), pp. 193-203

[4] D. Vivares et al. Catching the PEG-induced attractive interaction between proteins, The European Physical Journal E, Volume 9 (2002), pp. 15-25

[5] F. Bonneté et al. Second virial coefficient: variations with lysozyme crystallization conditions, Journal of Crystal Growth, Volume 196 (1999), pp. 403-414

[6] A. George; W.W. Wilson Predicting protein crystallization from a dilute solution property, Acta Crystallographica D, Volume 50 (1994), pp. 361-365

[7] M. Muschol; F. Rosenberger Interactions in under- and supersaturated lysozyme solutions. Static and dynamic light scattering results, Journal of Chemical Physics, Volume 103 (1995), pp. 10424-10432

[8] F. Vérétout et al. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions, Journal of Molecular Biology, Volume 205 (1989), pp. 713-728

[9] M. Malfois et al. A model of attractive interactions to account for liquid–liquid phase separation of protein solutions, Journal of Chemical Physics, Volume 105 (1996), pp. 3290-3300

[10] D. Vivares; F. Bonneté Liquid–liquid phase separations in urate oxidase/PEG mixtures: characterization and implications for protein crystallization, Journal of Physical Chemistry B, Volume 108 (2004), p. 6498

[11] A. Ducruix et al. Protein interactions as seen by solution X-ray scattering prior to crystallogenesis, Journal of Crystal Growth, Volume 168 (1996), pp. 28-39

[12] D. Vivares; F. Bonneté X-ray scattering studies of Aspergillus flavus urate oxidase: towards a better understanding of PEG effects on the crystallization of large proteins, Acta Crystallographica D, Volume 58 (2002), pp. 472-479

[13] S. Finet; A. Tardieu Alpha-crystallin interaction forces studied by small angle X-ray scattering and numerical simulations, Journal of Crystal Growth, Volume 232 (2001), pp. 40-49

[14] M. Budayova et al. Interactions in solution of large oligomeric protein, Journal of Crystal Growth, Volume 196 (1999), pp. 210-219

[15] S. Asakura; F. Oosawa On the interaction between two bodies immersed in a solution of macromolecules, Journal of Chemical Physics, Volume 22 (1954), pp. 1255-1256

[16] A. Guinier; G. Fournet Small Angle Scattering of X-Rays, Wiley, New York, 1955

[17] W.G. Mcmillan; J.E. Mayer The statistical thermodynamics of multicomponent systems, Journal of Chemical Physics, Volume 13 (1945), pp. 276-306

[18] B.H. Zimm Application of the methods of molecular distribution to solutions of large molecules, Journal of Chemical Physics, Volume 14 (1946), pp. 164-180

[19] C. Haas et al. Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution, The Journal of Physical Chemistry B, Volume 103 (1999), pp. 2808-2811

[20] L. Belloni A hypernetted chain study of highly asymmetrical polyelectrolytes, Chemical Physics, Volume 99 (1985), pp. 43-54

[21] L. Belloni Self-consistent integral equation applied to the highly charged primitive model, Journal of Chemical Physics, Volume 88 (1988), pp. 5143-5148

[22] L. Belloni Interacting monodisperse and polydisperse spheres (T. Zemb; P. Lindner, eds.), Neutron, X-Ray and Light Scattering, North-Holland Delta Series, Elsevier Science Publishers B.V., Amsterdam, Oxford, New York, Tokyo, 1991, pp. 135-155

[23] T. Arakawa; S. Timasheff Theory of protein solubility, Methods in Enzymology, Volume 114 (1985), pp. 49-77

[24] C. Carbonnaux et al. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2, Protein Science, Volume 4 (1995), pp. 2123-2128

[25] J.-P. Guilloteau et al. Variation of lysozyme solubility as a function of temperature in the presence of organic and inorganic salts, Journal of Crystal Growth, Volume 122 (1992), pp. 223-230

[26] S. Finet et al. The Hofmeister effect as seen by SAXS in protein solutions, Current Opinion in Colloid & Interface Science, Volume 9 (2004), pp. 112-116

[27] M. Casselyn et al. Spherical plant viruses: interactions in solution, phase diagrams and crystallization of brome mosaic virus, Acta Crystallographica. Section D. Biological Crystallography, Volume 57 (2001), pp. 1799-1812

[28] P.G. Bolhuis et al. Accurate effective pair potential for polymer solutions, Journal of Chemical Physics, Volume 114 (2001), pp. 4296-4311

[29] C. Faber et al. Study of the solubility of a modified bacillus licheniformis r-amylase around the isoelectric point, Journal of Chemical and Engineering Data, Volume 52 (2007), pp. 707-713

[30] C.L.D. Gibb; B.C. Gibb Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes, Journal of the American Chemical Society, Volume 133 (2011), pp. 7344-7347

[31] J. Drenth The nucleation of lysozyme from a fluctuation point of view, Crystal Growth & Design, Volume 5 (2005), pp. 1125-1127

[32] J.A. Gavira; J.M. Garcia-Ruiz Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment, Crystal Growth & Design, Volume 9 (2009), pp. 2610-2615

[33] Y.X. Liu et al. Toward further understanding of lysozyme crystallization: phase diagram, protein–protein interaction, nucleation kinetics, and growth kinetics, Crystal Growth & Design, Volume 10 (2010), pp. 548-558

[34] P.G. Vekilov Nucleation, Crystal Growth & Design, Volume 10 (2010), pp. 5007-5019

[35] C. Jacobsen et al. Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths, Biotechnology and Bioengineering, Volume 57 (1998), pp. 666-675

[36] N. Collocʼh et al. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 A resolution, Nature Structural Biology, Volume 4 (1997), pp. 947-952

[37] F. Bonneté et al. Interactions in solution and crystallization of Aspergillus flavus urate oxidase, Journal of Crystal Growth, Volume 232 (2001), pp. 330-339

[38] F. Bonneté; D. Vivares Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules, Acta Crystallographica D, Volume 58 (2002), pp. 1571-1575

[39] P. Retailleau et al. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site, Acta Crystallographica D, Volume 61 (2005), pp. 218-229

[40] P. Retailleau et al. Complexed and ligand-free high resolution structures of Urate oxidase (Uox) from Aspergillus flavus: a re-assignation of the active site binding mode, Acta Crystallographica D, Volume 60 (2004), pp. 453-462

[41] L. Gabison et al. Near-atomic resolution structures of urate oxidase complexed with its substrate and analogues: the protonation state of the ligand, Acta Crystallographica D, Volume 66 (2010), pp. 714-724

[42] L. Gabison et al. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: Mechanistic implications, BMC Structural Biology, Volume 8 (2008)

[43] M. Budayova-Spano et al. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin, Acta Crystallographica F, Volume 62 (2006), pp. 306-309

[44] M. Riès-Kautt; A. Ducruix From solution to crystals with a physico-chemical aspect (R. Giegé, ed.), Crystallization of Nucleic Acids and Proteins – A Practical Approach, Oxford University Press, Oxford, New York, Tokyo, 1999

[45] M. Giffard et al. Salting-in effect on urate oxidase crystal design, Crystal Growth & Design, Volume 8 (2008), pp. 4220-4226

[46] R. Hayashi et al. Introduction of high pressure to food processing: Preferential proteolysis of β-lactoglobulin in milk whey, Journal of Food Science, Volume 52 (1987), pp. 1107-1108

[47] K. Heremans; L. Smeller Protein structure and dynamics at high pressure, Biochimica et Biophysica Acta, Volume 1386 (1998), pp. 353-370

[48] T.A. Jones et al. Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallographica A, Volume 47 (1991), pp. 110-119

[49] R. Fourme et al. High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals, Journal of Synchrotron Radiation, Volume 8 (2001), pp. 1149-1156

[50] R. Fourme et al. High-pressure macromolecular crystallography (HPMX): status and prospects, Biochimica et Biophysica Acta, Volume 1764 (2006), pp. 384-390

[51] K. Visuri et al. A new method for protein crystallization using high pressure, Nature Biotechnology, Volume 8 (1990), pp. 547-549

[52] B. Lorber et al. Effect of high hydrostatic pressure on nucleation and growth of protein crystals, Journal of Crystal Growth, Volume 158 (1996), pp. 103-117

[53] M. Gross; R. Jaenicke Growth inhibition of lysozyme crystals at high hydrostatic pressure, FEBS Letters, Volume 284 (1991), pp. 87-90

[54] N. Chayen Protein crystallization, Structural Genomics and High Throughput Structural Biology, CRC Press, 2005, pp. 29-48

[55] E. Girard et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure, Biophysical Journal, Volume 98 (2010), pp. 2365-2373

[56] Z. Takáts et al. Qualitative and quantitative determination of poloxamer surfactants by mass spectrometry, Rapid Communications in Mass Spectrometry, Volume 15 (2001), pp. 805-810

[57] I. Schmolka A review of block polymer surfactants, Journal of the American Oil Chemistsʼ Society, Volume 54 (1977), pp. 110-116

[58] M. Adams et al. Amphiphilic block copolymers for drug delivery, Journal of Pharmaceutical Sciences, Volume 92 (2003), pp. 1343-1355

[59] R.C. Lee et al. Surfactant copolymers prevent aggregation of heat denatured lysozyme, Annals of Biomedical Engineering, Volume 34 (2006), pp. 1190-1200

[60] L.A. Garcia, Production of antisera comprising fractionating plasma or serum with an ethylene oxide-polyoxypropylene block copolymer, Baxter Laboratories, Inc., United States of America, 1975.

[61] M. Giffard et al. Surfactant poloxamer 188 as a new crystallizing agent for urate oxidase, Crystal Growth & Design, Volume 9 (2009), pp. 4199-4206

Cité par Sources :

Commentaires - Politique