[Propriétés colloïdales de solutions de macromolécules biologiques : Applications à la croissance cristalline de lʼurate oxydase]
La cristallisation des macromolécules biologiques est gouvernée par un équilibre dʼinteractions faibles, attractives et répulsives. La connaissance des propriétés des solutions, via la mesure du second coefficient du virial, nous permet de choisir les paramètres physico-chimiques qui gouvernent ces potentiels et de contrôler les diagrammes de phases et ainsi croitre des cristaux pour des applications spécifiques de la bio-cristallographie au procédé industriel. Nous avons mis en évidence, avec lʼurate oxydase, un effet salting-in qui augmente sa solubilité ainsi que lʼeffet de déplétion dʼun polymère amphiphile permettant de cristalliser la protéine à une concentration en polymère supérieure à sa cmc. Ces deux effets ont été utilisés pour croître des cristaux pour la diffraction des rayons X sous pression ainsi que pour purifier la protéine par cristallisation.
Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.
Mot clés : Protéines solubles, Diffusion des rayons X aux petits angles, Second coefficient du viriel, Potentiels de paire, Cristallisation en solution, Croissance cristalline
Françoise Bonneté 1
@article{CRPHYS_2013__14_2-3_156_0, author = {Fran\c{c}oise Bonnet\'e}, title = {Colloidal properties of biomacromolecular solutions: {Towards} urate oxidase crystal design}, journal = {Comptes Rendus. Physique}, pages = {156--168}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.12.005}, language = {en}, }
Françoise Bonneté. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 156-168. doi : 10.1016/j.crhy.2012.12.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.12.005/
[1] et al. Phase diagram of colloidal solutions, Physical Review Letters, Volume 77 (1996), pp. 4832-4835
[2] Enhancement of protein crystal nucleation by critical density fluctuations, Science, Volume 277 (1997), pp. 1975-1978
[3] et al. Proteins in solution: from X-ray scattering intensities to interaction potentials, Journal of Crystal Growth, Volume 196 (1999), pp. 193-203
[4] et al. Catching the PEG-induced attractive interaction between proteins, The European Physical Journal E, Volume 9 (2002), pp. 15-25
[5] et al. Second virial coefficient: variations with lysozyme crystallization conditions, Journal of Crystal Growth, Volume 196 (1999), pp. 403-414
[6] Predicting protein crystallization from a dilute solution property, Acta Crystallographica D, Volume 50 (1994), pp. 361-365
[7] Interactions in under- and supersaturated lysozyme solutions. Static and dynamic light scattering results, Journal of Chemical Physics, Volume 103 (1995), pp. 10424-10432
[8] et al. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions, Journal of Molecular Biology, Volume 205 (1989), pp. 713-728
[9] et al. A model of attractive interactions to account for liquid–liquid phase separation of protein solutions, Journal of Chemical Physics, Volume 105 (1996), pp. 3290-3300
[10] Liquid–liquid phase separations in urate oxidase/PEG mixtures: characterization and implications for protein crystallization, Journal of Physical Chemistry B, Volume 108 (2004), p. 6498
[11] et al. Protein interactions as seen by solution X-ray scattering prior to crystallogenesis, Journal of Crystal Growth, Volume 168 (1996), pp. 28-39
[12] X-ray scattering studies of Aspergillus flavus urate oxidase: towards a better understanding of PEG effects on the crystallization of large proteins, Acta Crystallographica D, Volume 58 (2002), pp. 472-479
[13] Alpha-crystallin interaction forces studied by small angle X-ray scattering and numerical simulations, Journal of Crystal Growth, Volume 232 (2001), pp. 40-49
[14] et al. Interactions in solution of large oligomeric protein, Journal of Crystal Growth, Volume 196 (1999), pp. 210-219
[15] On the interaction between two bodies immersed in a solution of macromolecules, Journal of Chemical Physics, Volume 22 (1954), pp. 1255-1256
[16] Small Angle Scattering of X-Rays, Wiley, New York, 1955
[17] The statistical thermodynamics of multicomponent systems, Journal of Chemical Physics, Volume 13 (1945), pp. 276-306
[18] Application of the methods of molecular distribution to solutions of large molecules, Journal of Chemical Physics, Volume 14 (1946), pp. 164-180
[19] et al. Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution, The Journal of Physical Chemistry B, Volume 103 (1999), pp. 2808-2811
[20] A hypernetted chain study of highly asymmetrical polyelectrolytes, Chemical Physics, Volume 99 (1985), pp. 43-54
[21] Self-consistent integral equation applied to the highly charged primitive model, Journal of Chemical Physics, Volume 88 (1988), pp. 5143-5148
[22] Interacting monodisperse and polydisperse spheres (T. Zemb; P. Lindner, eds.), Neutron, X-Ray and Light Scattering, North-Holland Delta Series, Elsevier Science Publishers B.V., Amsterdam, Oxford, New York, Tokyo, 1991, pp. 135-155
[23] Theory of protein solubility, Methods in Enzymology, Volume 114 (1985), pp. 49-77
[24] et al. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2, Protein Science, Volume 4 (1995), pp. 2123-2128
[25] et al. Variation of lysozyme solubility as a function of temperature in the presence of organic and inorganic salts, Journal of Crystal Growth, Volume 122 (1992), pp. 223-230
[26] et al. The Hofmeister effect as seen by SAXS in protein solutions, Current Opinion in Colloid & Interface Science, Volume 9 (2004), pp. 112-116
[27] et al. Spherical plant viruses: interactions in solution, phase diagrams and crystallization of brome mosaic virus, Acta Crystallographica. Section D. Biological Crystallography, Volume 57 (2001), pp. 1799-1812
[28] et al. Accurate effective pair potential for polymer solutions, Journal of Chemical Physics, Volume 114 (2001), pp. 4296-4311
[29] et al. Study of the solubility of a modified bacillus licheniformis r-amylase around the isoelectric point, Journal of Chemical and Engineering Data, Volume 52 (2007), pp. 707-713
[30] Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes, Journal of the American Chemical Society, Volume 133 (2011), pp. 7344-7347
[31] The nucleation of lysozyme from a fluctuation point of view, Crystal Growth & Design, Volume 5 (2005), pp. 1125-1127
[32] Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment, Crystal Growth & Design, Volume 9 (2009), pp. 2610-2615
[33] et al. Toward further understanding of lysozyme crystallization: phase diagram, protein–protein interaction, nucleation kinetics, and growth kinetics, Crystal Growth & Design, Volume 10 (2010), pp. 548-558
[34] Nucleation, Crystal Growth & Design, Volume 10 (2010), pp. 5007-5019
[35] et al. Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths, Biotechnology and Bioengineering, Volume 57 (1998), pp. 666-675
[36] et al. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 A resolution, Nature Structural Biology, Volume 4 (1997), pp. 947-952
[37] et al. Interactions in solution and crystallization of Aspergillus flavus urate oxidase, Journal of Crystal Growth, Volume 232 (2001), pp. 330-339
[38] Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules, Acta Crystallographica D, Volume 58 (2002), pp. 1571-1575
[39] et al. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site, Acta Crystallographica D, Volume 61 (2005), pp. 218-229
[40] et al. Complexed and ligand-free high resolution structures of Urate oxidase (Uox) from Aspergillus flavus: a re-assignation of the active site binding mode, Acta Crystallographica D, Volume 60 (2004), pp. 453-462
[41] et al. Near-atomic resolution structures of urate oxidase complexed with its substrate and analogues: the protonation state of the ligand, Acta Crystallographica D, Volume 66 (2010), pp. 714-724
[42] et al. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: Mechanistic implications, BMC Structural Biology, Volume 8 (2008)
[43] et al. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin, Acta Crystallographica F, Volume 62 (2006), pp. 306-309
[44] From solution to crystals with a physico-chemical aspect (R. Giegé, ed.), Crystallization of Nucleic Acids and Proteins – A Practical Approach, Oxford University Press, Oxford, New York, Tokyo, 1999
[45] et al. Salting-in effect on urate oxidase crystal design, Crystal Growth & Design, Volume 8 (2008), pp. 4220-4226
[46] et al. Introduction of high pressure to food processing: Preferential proteolysis of β-lactoglobulin in milk whey, Journal of Food Science, Volume 52 (1987), pp. 1107-1108
[47] Protein structure and dynamics at high pressure, Biochimica et Biophysica Acta, Volume 1386 (1998), pp. 353-370
[48] et al. Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallographica A, Volume 47 (1991), pp. 110-119
[49] et al. High-pressure protein crystallography (HPPX): instrumentation, methodology and results on lysozyme crystals, Journal of Synchrotron Radiation, Volume 8 (2001), pp. 1149-1156
[50] et al. High-pressure macromolecular crystallography (HPMX): status and prospects, Biochimica et Biophysica Acta, Volume 1764 (2006), pp. 384-390
[51] et al. A new method for protein crystallization using high pressure, Nature Biotechnology, Volume 8 (1990), pp. 547-549
[52] et al. Effect of high hydrostatic pressure on nucleation and growth of protein crystals, Journal of Crystal Growth, Volume 158 (1996), pp. 103-117
[53] Growth inhibition of lysozyme crystals at high hydrostatic pressure, FEBS Letters, Volume 284 (1991), pp. 87-90
[54] Protein crystallization, Structural Genomics and High Throughput Structural Biology, CRC Press, 2005, pp. 29-48
[55] et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure, Biophysical Journal, Volume 98 (2010), pp. 2365-2373
[56] et al. Qualitative and quantitative determination of poloxamer surfactants by mass spectrometry, Rapid Communications in Mass Spectrometry, Volume 15 (2001), pp. 805-810
[57] A review of block polymer surfactants, Journal of the American Oil Chemistsʼ Society, Volume 54 (1977), pp. 110-116
[58] et al. Amphiphilic block copolymers for drug delivery, Journal of Pharmaceutical Sciences, Volume 92 (2003), pp. 1343-1355
[59] et al. Surfactant copolymers prevent aggregation of heat denatured lysozyme, Annals of Biomedical Engineering, Volume 34 (2006), pp. 1190-1200
[60] L.A. Garcia, Production of antisera comprising fractionating plasma or serum with an ethylene oxide-polyoxypropylene block copolymer, Baxter Laboratories, Inc., United States of America, 1975.
[61] et al. Surfactant poloxamer 188 as a new crystallizing agent for urate oxidase, Crystal Growth & Design, Volume 9 (2009), pp. 4199-4206
Cité par Sources :
Commentaires - Politique