[Réponses électromagnétiques et thermiques dans la matière topologique : Termes topologiques, anomalies quantiques et D-branes]
We discuss the thermal (or gravitational) responses in topological superconductors and in topological phases in general. Such thermal responses (as well as electromagnetic responses for conserved charge) provide a definition of topological insulators and superconductors beyond the single-particle picture. In two-dimensional topological phases, the Strěda formula for the electric Hall conductivity is generalized to the thermal Hall conductivity. Applying this formula to the Majorana surface states of three-dimensional topological superconductors predicts cross-correlated responses between the angular momentum and thermal polarization (entropy polarization). We also discuss a use of D-branes in string theory as a systematic tool to derive all such topological terms and topological responses. In particular, we relate the
Nous traitons des réponses thermiques (ou gravitationnelles) des supraconducteurs topologiques et, plus généralement, des phases topologiques. Ces réponses thermiques (tout comme les réponses électromagnétiques pour la charge électrique conservée) fournissent une définition des isolants et supraconducteurs topologiques, qui reste valable au-delà du modèle à une particule. Pour les phases bidimensionnelles, la formule de Streda de la conductivité de Hall de charge est généralisée à la conductivité de Hall thermique. Appliquée aux états de surface de Majorana des supraconducteurs topologiques, cette formule conduit à des fonctions de réponse croisées entre le moment angulaire et la polarisation thermique. Nous discutons également de la théorie des cordes (D-branes) comme outil systématique pour obtenir ces réponses topologiques. En particulier, nous relions lʼinvariant topologique
Mots-clés : Réponse électromagnétique, Réponse thermique, Classification topologique, Anomalie quantique, Théorie des branes
Akira Furusaki 1, 2 ; Naoto Nagaosa 2, 3 ; Kentaro Nomura 4 ; Shinsei Ryu 5 ; Tadashi Takayanagi 6, 7
@article{CRPHYS_2013__14_9-10_871_0, author = {Akira Furusaki and Naoto Nagaosa and Kentaro Nomura and Shinsei Ryu and Tadashi Takayanagi}, title = {Electromagnetic and thermal responses in topological matter: {Topological} terms, quantum anomalies and {D-branes}}, journal = {Comptes Rendus. Physique}, pages = {871--883}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.03.002}, language = {en}, }
TY - JOUR AU - Akira Furusaki AU - Naoto Nagaosa AU - Kentaro Nomura AU - Shinsei Ryu AU - Tadashi Takayanagi TI - Electromagnetic and thermal responses in topological matter: Topological terms, quantum anomalies and D-branes JO - Comptes Rendus. Physique PY - 2013 SP - 871 EP - 883 VL - 14 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2013.03.002 LA - en ID - CRPHYS_2013__14_9-10_871_0 ER -
%0 Journal Article %A Akira Furusaki %A Naoto Nagaosa %A Kentaro Nomura %A Shinsei Ryu %A Tadashi Takayanagi %T Electromagnetic and thermal responses in topological matter: Topological terms, quantum anomalies and D-branes %J Comptes Rendus. Physique %D 2013 %P 871-883 %V 14 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2013.03.002 %G en %F CRPHYS_2013__14_9-10_871_0
Akira Furusaki; Naoto Nagaosa; Kentaro Nomura; Shinsei Ryu; Tadashi Takayanagi. Electromagnetic and thermal responses in topological matter: Topological terms, quantum anomalies and D-branes. Comptes Rendus. Physique, Topological insulators / Isolants topologiques, Volume 14 (2013) no. 9-10, pp. 871-883. doi : 10.1016/j.crhy.2013.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.03.002/
[1] Proc. R. Soc. Lond. Ser. A, 392 (1984), p. 45
[2] Phys. Rev., 95 (1954), p. 1154
[3] Rev. Mod. Phys., 82 (2010), p. 1539
[4] Phys. Rev. Lett., 301 (2003), p. 1348
[5] Rev. Mod. Phys., 82 (2010), p. 1959
[6] Science, 329 (2010), p. 297
[7] The Quantum Hall Effect (R.E. Prange; S.M. Girvin, eds.), Springer, New York, 1987
[8] Phys. Rev. Lett., 49 (1982), p. 405
[9] Ann. Phys. (N.Y.), 160 (1985), p. 355
[10] Rev. Mod. Phys., 82 (2010), p. 3045
[11] Rev. Mod. Phys., 83 (2011), p. 1057
[12] Phys. Rev. Lett., 95 (2005), p. 146802
[13] Phys. Rev. B, 79 (2009), p. 195321
[14] Phys. Rev. B, 75 (2007), p. 121306(R)
[15] Phys. Rev. Lett., 98 (2007), p. 106803
[16] Science, 314 (2006), p. 1757
[17] Phys. Rev. B, 76 (2007), p. 045302
[18] Phys. Rev. B, 78 (2008), p. 195424
[19] Phys. Rev. Lett., 102 (2009), p. 146805
[20] Phys. Rev. Lett., 58 (1987), p. 1799
[21] Phys. Rev. B, 61 (2000), p. 10267
[22] Rev. Mod. Phys., 75 (2003), p. 657
[23] AIP Conf. Proc., 78 (2008), p. 195125
[24] arXiv
|[25] Phys. Rev. Lett., 102 (2009), p. 187001
[26] Phys. Rev. B, 37 (1988), p. 9298
[27]
3He–B should be called topological superfluid, rather than topological SC. Since we are interested in topological properties of fermionic quasi-particle wavefunctions, and since thermal responses we are after are generic and common to both of them, we do not distinguish topological superfluid and topological SCs in this paper.
[28] et al. Phys. Rev. Lett., 95 (2005), p. 075301
[29] J. Phys. Soc. Jpn., 80 (2011), p. 013602
[30] et al. Phys. Rev. Lett., 104 (2010), p. 057001
[31] Phys. Rev. Lett., 105 (2010), p. 097001
[32] Phys. Rev. Lett., 107 (2011), p. 217001
[33] AIP Conf. Proc., 1134 (2009), p. 22
[34] New J. Phys., 12 (2010), p. 065010
[35] J. Phys. C, Solid State Phys., 15 (1982), p. 717
[36] J. Phys. C, Solid State Phys., 10 (1977), p. 2153
[37] Phys. Rev., 135 (1964), p. A1505
[38] arXiv
(See for example) |[39] Phys. Rev. Lett., 108 (2012), p. 026802
[40] Phys. Rev. B, 85 (2012), p. 045104 | arXiv
[41] Phys. Rev. B, 84 (2011), p. 014527
[42] Phys. Rev. B, 81 (2010), p. 045120 (For a similar calculation for the electromagnetic θ-angle, see, for example)
[43] Path Integrals and Quantum Anomalies, Oxford Univ. Press, 2004
[44]
It is, however, not clear if we can reduce the gravitational instanton term, by taking a weak gravitational field limit, to
[45] JETP Lett., 51 (1990), p. 125
[46] Nucl. Phys. B, 500 (1997), p. 3 | arXiv
[47] J. High Energy Phys., 9711 (1997), p. 002 | arXiv
[48] J. High Energy Phys., 9812 (1998), p. 019 | arXiv
[49] Adv. Theor. Math. Phys., 2 (1999), p. 1373 | arXiv
[50] Phys. Lett. B, 693 (2010), p. 175
[51] Phys. Rev. D, 82 (2010), p. 086014
[52]
[53] String Theory, vols. 1 and 2, Cambridge Univ. Press, Cambridge, UK, 1998 (402 pp)
[54]
In this section, for illustration purposes, we have not discussed how discrete symmetries are implemented in the D-brane realization of topological phases. We found that particle-hole symmetry corresponds to the orientation reverse Ω of strings, while chiral (or sublattice) symmetry to the parity transformation in one of the DD directions, respectively. Time-reversal is nothing but the orientifold projection. With these implementations of discrete symmetries, our D-brane systems are characterized by the directions of
[55]
Their edge states are obtained by replacing one of DD directions by a ND direction. The chiral fermions typical in edge states appear due to the topological mechanism. This construction leads to the correct fermion spectra for the topological insulators and their edge states.
[56] Phys. Rev. Lett., 75 (1995), p. 4724 | arXiv
[57] Class. Quantum Gravity, 14 (1997), p. 47 | arXiv
[58] Phys. Lett. B, 441 (1998), p. 133 | arXiv
[59] J. High Energy Phys., 9808 (1998), p. 012 | arXiv
[60] Int. J. Mod. Phys. A, 20 (2005), p. 5513 | arXiv
[61] Phys. Rev. B, 85 (2012), p. 184503
Cité par Sources :
Commentaires - Politique