[Analyse temporelle de lʼagglomération de films minces de Pt sur YSZ monocristallin]
La nano-structuration de films minces par des mécanismes dʼinstabilités spatiales est une alternative potentielle aux processus traditionnels dits « top-down », comme par exemple la lithographie à faisceau dʼélectrons. Dans cette contribution, nous analysons la dynamique de la structuration de films minces par agglomération. Pour cela, des films minces de Pt dʼune épaisseur de 50 nm ont été déposées sur des substrats monocristallins de zircone yttriée (YSZ) par pulvérisation magnétronique. La déposition a été suivie dʼun traitement thermique à 1023 K pendant 10 à 130 minutes. Lʼévolution morphologique des films minces de Pt a été étudiée par microscopie électronique à balayage et par microscopie à force atomique. Cela a permis de déterminer la dynamique de croissance des cavités dans le film ainsi que des paramètres morphologiques comme la distance de corrélation latérale et les fonctionnelles de Minkowski. Lʼévolution morphologique obtenue expérimentalement a été comparée aux structures de films minces déterminées par des simulations de dynamique cellulaire. Trois observations ont été faites. (i) Le rayon des cavités dépend du temps t, avec un taux de croissance proportionnel à , ce qui est en accord avec la théorie dʼinstabilité de Srolovitz, décrivant la croissance de cavités dominée par une diffusion superficielle. (ii) Lʼévolution morphologique des films minces de Pt a été analysée en fonction du temps à lʼaide des mesures de Minkowski et de la distance de corrélation latérale. Une discontinuité de la distance de corrélation latérale couplée à la coalescence des cavités a été trouvée, ainsi quʼune déviation significative des fonctionnelles de Minkowski du comportement gaussien attendu. (iii) En utilisant lʼéquation de Ginzburg–Landau comme équation de diffusion fondamentale, les simulations de dynamique cellulaire ont permis de reproduire les morphologies des films minces pendant la phase initiale de lʼagglomération.
The controlled assembly of nanostructures via shape instability mechanisms is a potential alternative to traditional top-down processes like e-beam lithography for nanostructuring surfaces. In this contribution, the dynamics of the nanostructuresʼ assembly via thin film agglomeration have been analyzed. Pt thin films with a thickness of 50 nm were deposited via magnetron sputtering on yttria-stabilized zirconia (YSZ) single crystals and subjected to heat treatments at 1023 K for times ranging from 10 to 130 min. The morphological evolution of Pt thin films has been investigated by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM), obtaining the hole growth dynamics and morphological parameters like the lateral correlation length and the nanostructuresʼ Minkowski functionals. The experimentally obtained morphology evolution is compared to the simulated evolution of thin film structures resulting from a cell dynamical system (CDS) model. Three main observations have been made. (i) The hole radius is found to scale as function of time t with a rate proportional to . This is in agreement with Srolovitzʼs instability theory describing hole growth predominated by surface diffusion. (ii) The morphological evolution of the Pt thin films has been analyzed as function of time t by means of Minkowski measures and the lateral correlation length. A discontinuity in the lateral correlation length and a significant deviation of the Minkowski functionals from the expected Gaussian behavior was found to be coupled with the coalescence of holes. (iii) By using the Ginzburg–Landau equation for the description of the fundamental diffusion process, the CDS model allows a computational reproduction of the experimentally obtained film morphologies in the early stages of agglomeration.
Mot clés : Agglomération, Cinétique, Métal sur céramique, Pt, Zircone, Simulation de dynamique cellulaire
Henning Galinski 1, 2 ; Thomas Ryll 1 ; Lukas Schlagenhauf 1 ; Iwan Schenker 1 ; Ralph Spolenak 2 ; Ludwig J. Gauckler 1, 3
@article{CRPHYS_2013__14_7_590_0, author = {Henning Galinski and Thomas Ryll and Lukas Schlagenhauf and Iwan Schenker and Ralph Spolenak and Ludwig J. Gauckler}, title = {Time-dependent analysis of agglomerating {Pt} thin films on {YSZ} single crystals}, journal = {Comptes Rendus. Physique}, pages = {590--600}, publisher = {Elsevier}, volume = {14}, number = {7}, year = {2013}, doi = {10.1016/j.crhy.2013.06.007}, language = {en}, }
TY - JOUR AU - Henning Galinski AU - Thomas Ryll AU - Lukas Schlagenhauf AU - Iwan Schenker AU - Ralph Spolenak AU - Ludwig J. Gauckler TI - Time-dependent analysis of agglomerating Pt thin films on YSZ single crystals JO - Comptes Rendus. Physique PY - 2013 SP - 590 EP - 600 VL - 14 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2013.06.007 LA - en ID - CRPHYS_2013__14_7_590_0 ER -
%0 Journal Article %A Henning Galinski %A Thomas Ryll %A Lukas Schlagenhauf %A Iwan Schenker %A Ralph Spolenak %A Ludwig J. Gauckler %T Time-dependent analysis of agglomerating Pt thin films on YSZ single crystals %J Comptes Rendus. Physique %D 2013 %P 590-600 %V 14 %N 7 %I Elsevier %R 10.1016/j.crhy.2013.06.007 %G en %F CRPHYS_2013__14_7_590_0
Henning Galinski; Thomas Ryll; Lukas Schlagenhauf; Iwan Schenker; Ralph Spolenak; Ludwig J. Gauckler. Time-dependent analysis of agglomerating Pt thin films on YSZ single crystals. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 590-600. doi : 10.1016/j.crhy.2013.06.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.007/
[1] Templated solid-state dewetting to controllably produce complex patterns, Adv. Mater., Volume 23 (2011) no. 13, pp. 1567-1571 | DOI
[2] A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon, Small, Volume 4 (2008) no. 3, pp. 330-333 | DOI
[3] Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Appl. Phys. Lett., Volume 86 (2005) no. 12, p. 121903 | DOI
[4] Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography, Nanotechnology, Volume 19 (2008) no. 48, p. 485306
[5] Agglomeration of Pt thin films on dielectric substrates, Phys. Rev. B, Volume 82 (2010), p. 235415 | DOI
[6] Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte, Adv. Funct. Mater., Volume 21 (2011) no. 3, pp. 565-572 | DOI
[7] Phase diagram for nanostructuring surfaces by slow highly charged ions, Phys. Rev. Lett., Volume 109 (2012), p. 117602 | DOI
[8] Development of knife-edge ridges on ion-bombarded surfaces, Appl. Phys. Lett., Volume 101 (2012) no. 14, p. 143109 | DOI
[9] Nano-structured materials produced from simple metallic alloys by phase separation, Nanotechnology, Volume 16 (2005) no. 10, p. 2176
[10] Dealloying of platinum–aluminum thin films: Electrode performance, Phys. Rev. B, Volume 84 (2011), p. 184111 | DOI
[11] Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957) no. 3, pp. 333-339 | DOI
[12]
, Royal Aircraft Establishment, Farnborough, England (1966), p. 38 (Technical Report)[13] Capillary instabilities in thin films. I. Energetics, J. Appl. Phys., Volume 60 (1986) no. 1, pp. 247-254 | DOI
[14] Capillary instabilities in thin films. II. Kinetics, J. Appl. Phys., Volume 60 (1986) no. 1, pp. 255-260 | DOI
[15] The thermodynamics and kinetics of film agglomeration, JOM, Volume 47 (1995), pp. 31-36
[16] Capillary instabilities in thin films: A model of thermal pitting at grain boundary vertices, Acta Metall. Mater., Volume 40 (1992) no. 12, pp. 3239-3248 | DOI
[17] Comparisons of parameters involved in mass transport and desorption at the surface of noble metals and sapphire, Surf. Sci., Volume 566–568 (2004) no. Part 1, pp. 148-154 | DOI
[18] Dewetting of solid films with substrate-mediated evaporation, Phys. Rev. E, Volume 85 (2012), p. 011602 | DOI
[19] Dynamics of solid thin-film dewetting in the silicon-on-insulator system, New J. Phys., Volume 13 (2011) no. 4, p. 043017
[20] Anisotropy and coarsening in the instability of solid dewetting fronts, Phys. Rev. Lett., Volume 106 (2011) no. 10, p. 105506 | DOI
[21] Non-reactive metal/oxide interfaces: from model calculations towards realistic simulations, Phys. Status Solidi B, Volume 243 (2006) no. 11, pp. 2516-2532 | DOI
[22] The effect of kinetics in the surface evolution of thin crystalline films, J. Cryst. Growth, Volume 303 (2007) no. 1, pp. 90-94 | DOI
[23] Surface diffusion dewetting of thin solid films: Numerical method and application to Si/SiO2, Phys. Rev. B, Volume 73 (2006) no. 11, p. 115427 | DOI
[24] Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films, Acta Mater., Volume 59 (2011) no. 2, pp. 582-589 | DOI
[25] Capillary instabilities in thin films, J. Electron. Mater., Volume 19 (1990), pp. 1153-1160 | DOI
[26] Fingering instability of a retracting solid film edge, J. Appl. Phys., Volume 97 (2005) no. 4, p. 043515 | DOI
[27] Copper on sapphire: Stability of thin films at 0.7 tm, Acta Metall., Volume 37 (1989) no. 11, pp. 2947-2952 | DOI
[28] The mechanism of initial de-wetting and detachment of thin Au films on YSZ, Acta Mater., Volume 57 (2009) no. 1, pp. 248-256 | DOI
[29] Hillock formation of pt thin films on single-crystal yttria-stabilized zirconia, Phys. Rev. B, Volume 85 (2012), p. 125408 | DOI
[30] Atomistic simulation of hillock growth, Acta Mater., Volume 58 (2010) no. 16, pp. 5471-5480 | DOI
[31] Effect of film thickness and annealing temperature on hillock distributions in pure Al films, Scr. Mater., Volume 56 (2007) no. 1, pp. 17-20 | DOI
[32] Hillock formation during electromigration in Cu and Al thin films: Three-dimensional grain growth, Appl. Phys. Lett., Volume 66 (1995) no. 10, pp. 1214-1215 | DOI
[33] Hillock formation, hole growth and agglomeration in thin silver films, Thin Solid Films, Volume 65 (1980) no. 3, pp. 339-350 | DOI
[34] Formation of hillocks in pt/ti electrodes and their effects on short phenomena of PZT films deposited by reactive sputtering, Thin Solid Films, Volume 371 (2000) no. 1–2, pp. 264-271 | DOI
[35] Whisker and hillock formation on Sn, Sn–Cu and Sn–Pb electrodeposits, Acta Mater., Volume 53 (2005) no. 19, pp. 5033-5050 | DOI
[36] Solid-state dewetting of thin films, Annu. Rev. Mater. Res., Volume 42 (2012) no. 1, pp. 399-434 | DOI
[37] Dewetting of Au and AuPt alloy films: A dewetting zone model, J. Appl. Phys., Volume 113 (2013) no. 9, p. 094301 | DOI
[38] Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B, Volume 85 (2012), p. 195414 | DOI
[39] Capillary instabilities in thin, continuous films, Thin Solid Films, Volume 208 (1992) no. 1, pp. 23-28 | DOI
[40] Equilibrium nano-shape change induced by epitaxial stress: effect of surface stress, Appl. Surf. Sci., Volume 164 (2000) no. 1–4, pp. 68-71 | DOI
[41] Platinum—a non-inert material reacting with oxides, Solid State Ion., Volume 75 (1995), pp. 187-192 | DOI
[42] Accelerated ageing test procedures for selective absorber coatings including lifetime estimation and comparison with outdoor test results, Sol. Energy Mater., Volume 19 (1989) no. 35, pp. 257-313 | DOI
[43] Utilizing Minkowski functionals for image analysis: A marching square algorithm, J. Stat. Mech. Theory Exp., Volume 2008 (2008) no. 12, p. P12015
[44] Statistical Physics and Spatial Statistics, Springer, Berlin, 2000 | DOI
[45] Complex dewetting scenarios captured by thin-film models, Nat. Mater., Volume 2 (2003) no. 1, pp. 59-63 | DOI
[46] Morphology of spatial patterns – porous media, spinodal decomposition and dissipative structures, Acta Phys. Pol. B, Volume 28 (1997) no. 8, pp. 1747-1782
[47] Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., Volume 58 (1987), pp. 836-839 | DOI
[48] Study of phase-separation dynamics by use of cell dynamical systems. II. Two-dimensional demonstrations, Phys. Rev. A, Volume 38 (1988), pp. 1542-1565 | DOI
[49] Cell dynamical system approach to block copolymers, Phys. Rev. A, Volume 41 (1990), pp. 6763-6771 | DOI
[50] Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: Structures, properties and external field effects, Prog. Polym. Sci., Volume 38 (2013) no. 2, pp. 369-405 | DOI
[51] Large scale simulation of block copolymers with cell dynamics, Eur. Phys. J. B, Volume 85 (2012), pp. 1-18 | DOI
[52] Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling, Phys. Rev. A, Volume 38 (1988), pp. 434-453 | DOI
[53] Cell dynamics simulations of microphase separation in block copolymers, Macromolecules, Volume 34 (2001) no. 1, pp. 116-126 | DOI
[54] Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys., Volume 42 (1965) no. 1, pp. 93-99 | DOI
[55] Dewetting: Film rupture by nucleation in the spinodal regime, Phys. Rev. Lett., Volume 87 (2001) no. 1, p. 016104 | DOI
[56] Open questions and promising new fields in dewetting, Eur. Phys. J. E, Volume 12 (2003), pp. 409-416 | DOI
Cité par Sources :
Commentaires - Politique