[Démouillage à lʼétat solide : dynamique et instabilités]
Le démouillage spontané de films minces solides sʼeffectue par retractation des bords du film et/ou par croissance hétérogènes de lacunes. Les modèles classiques continus décrivant le démouillage sont basés sur la diffusion de surface et prédisent des lois de comportement universelles. Nous décrivons quelques unes de ces prédictions et les comparons à de récents résultats expérimentaux obtenus sur des films monocristallins de Si(001)/SiO2 et de Ge(001)/SiO2 étudiés par micoscopie à électrons lents (LEEM) in-situ et par microscopie à force atomique (AFM) ex-situ. Les résultats expérimentaux ainsi obtenus diffèrent des prédictions théoriques. Plus précisément, à cause de lʼanisotropie cristalline : (i) les fronts de démouillage facetés restent stables pendant le démouillage et reculent à forme constante alors que les fronts de démouillage non facettés sont instables et reculent en formant des digitations, (ii) le bourrelet qui, pour des raisons de conservation de la masse, se forme pendant le démouillage sʼépaissit via un mode de croissance couche par couche limité par la nucléation bidimensionnelle sur la face sommitale du bourrelet, (iii) le mécanisme final de génération dʼilots tridimensionnels diffère de celui prédit par les modèles continus. Nous dicutons également les mécanismes de démouillage procédant par ouverture de lacunes. Dans le cas de Si(001)/SiO2, les lacunes de démouillage, initialement carrées, sont localement déstabilisées par les coins alors que dans le cas de Ge(001)/SiO2, les bords des lacunes deviennent invariablement instables conduisant à la formation de dendrites dont la densité dépend de la température et de lʼépaisseur du film. Finalement, nous discutons quelques cas de films ultraminces, plus sensibles à des variations locales dʼépaisseur, et formant par démouillage des structures fractales ou labyrinthiques.
Spontaneous dewetting of solid thin films proceeds by edge retraction of film edges and/or by heterogeneous void growth. Classical 1D and 2D continuous models of the evolution of a dewetting film, based on surface diffusion mechanisms, predict that in the long-time limit dewetting obeys universal scaling laws. In this paper, we review 1D and 2D predictions and recent experimental results. For this purpose, using Si(001)/SiO2 and Ge(001)/SiO2 single-crystalline thin films in different geometries, we have been able to compare theoretical predictions to experimental results obtained by combining in situ LEEM and ex situ AFM measurements. For dewetting from film edges, experimental results partially differ from continuous models predictions. More precisely, because of the crystallographic anisotropy: (i) the facetted edges remain stable during dewetting (they simply recede at constant shape) while poorly or un-facetted edges are unstable (they recede by finger formation); (ii) rim formation, induced by mass-conservation condition, proceeds in a layer-by-layer mode and is limited by 2D nucleation properties on the top of the rim; (iii) the island generation mechanism differs from the mass shedding behaviour predicted by 1D models. For dewetting mechanisms involving void growth, different behaviours are reported and discussed. For thin Si(001)/SiO2 films, the corners of the opening square-shaped voids lead to a local destabilisation of the growing voids. For thin Ge(001)/SiO2 films, the side of the voids invariably turns instable and forms tip dendrites whose branch density depends on the temperature and the initial film thickness. Finally, ultra-thin films, more sensitive to local fluctuations, dewet in a fractal geometry.
Mots-clés : Mouillage à lʼétat solide, Diffusion en surface, Dynamique du démouillage, Instabilités, SOI, GeOI
Fabien Cheynis 1 ; Frédéric Leroy 1 ; Pierre Müller 1
@article{CRPHYS_2013__14_7_578_0, author = {Fabien Cheynis and Fr\'ed\'eric Leroy and Pierre M\"uller}, title = {Dynamics and instability of solid-state dewetting}, journal = {Comptes Rendus. Physique}, pages = {578--589}, publisher = {Elsevier}, volume = {14}, number = {7}, year = {2013}, doi = {10.1016/j.crhy.2013.06.006}, language = {en}, }
Fabien Cheynis; Frédéric Leroy; Pierre Müller. Dynamics and instability of solid-state dewetting. Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 578-589. doi : 10.1016/j.crhy.2013.06.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.006/
[1] Z. Kristallogr., 110 (1958), p. 372
[2] Rev. Mod. Phys., 81 (2009), p. 739
[3] J. Electron. Mater., 19 (1990), p. 1153
[4] Jpn. J. Appl. Phys., 34 (1995), p. 1728
[5] Appl. Surf. Sci., 159 (2000), p. 121
[6] Appl. Phys. Lett., 76 (2000), p. 3271
[7] J. Appl. Phys., 91 (2002), p. 106
[8] J. Vac. Sci. Technol. B, 20 (2002), p. 167
[9] Phys. Rev. B, 72 (2005), p. 235413
[10] J. Appl. Phys., 100 (2006), p. 083507
[11] Surf. Sci., 570 (2004), p. L297
[12] J. Appl. Phys., 103 (2008), p. 023520
[13] Mater. Lett., 76 (2012), p. 155
[14] J. Appl. Phys., 102 (2007), p. 073503
[15] J. Appl. Phys., 105 (2009), p. 093525
[16] Int. J. Nanotechnol., 9 (2012), p. 396
[17] Phys. Rev. B, 68 (2003), p. 155423
[18] Appl. Surf. Sci., 190 (2002), p. 11
[19] J. Cryst. Growth, 210 (2000), p. 98
[20] Surf. Sci., 600 (2006), p. 1080
[21] New J. Phys., 11 (2009), p. 043001
[22] New J. Phys., 13 (2011), p. 043017
[23] Phys. Rev. B, 84 (2011), p. 245439
[24] Phys. Rev. B, 82 (2010), p. 085407
[25] Phys. Rev. B, 85 (2012), p. 195414
[26] Nat. Mater., 2 (2003), p. 59
[27] J. Appl. Phys., 28 (1957), p. 333
[28] J. Appl. Phys., 60 (1986), p. 255
[29] J. Appl. Phys., 81 (1997), p. 6091
[30] Acta Mater., 48 (2000), p. 1719
[31] J. Appl. Phys., 97 (2005), p. 43515
[32] Phys. Rev. B, 73 (2006), p. 115427
[33] R. Bradshaw, et al., Royal Aircraft Establishment, Technical Report 66095.
[34] Scr. Mater., 64 (2011), p. 962
[35] Phys. Rev. B, 75 (2007), p. 205312
[36] Phys. Rev. B, 82 (2010), p. 193408
[37] Acta Mater., 60 (2012), p. 3047
[38] E. Dornel, PhD thesis, UJF, Grenoble.
[39] Phys. Rev. Lett., 103 (2009), p. 195501
[40] Phys. Rev. Lett., 106 (2011), p. 105506
[41] Phys. Rev. Lett., 100 (2008), p. 186101
[42] Phys. Rev. Lett., 73 (1994), p. 1656
[43] Basics Problems of Thin Film Physics, vol. 3 (R. Niedermayer; H. Mayer, eds.), Vandenhoeck and Ruprech, Göttingen, 1966, p. 33
[44] Rep. Prog. Phys., 47 (1984), p. 399
[45] J. Appl. Phys., 79 (1996), p. 7604
[46] J. Appl. Phys., 60 (1986), p. 247
[47] Appl. Phys. Lett., 85 (2004), p. 3148
[48] Appl. Phys. Lett., 88 (2006), p. 141924
[49] Phys. Rev. B, 81 (2010), p. 041302(R)
[50] Appl. Phys. Lett., 102 (2013), p. 161603
[51] Phys. Rev. B (2013) (in press)
[52] Phys. Rev. A, 30 (1984), p. 3161
[53] Phys. Rev. A, 30 (1984), p. 2820
[54] Physica A, 187 (1992), p. 37
[55] Appl. Phys. Lett., 87 (2005), p. 121905
[56] J. Vac. Sci. Technol., 23 (2005), p. 1152
[57] J. Appl. Phys., 93 (2003) no. 6, pp. 3270-3278
[58] Phys. Rev. B, 82 (2010), p. 235415
[59] Appl. Phys. Lett., 83 (2003), p. 3162
[60] Appl. Phys. Lett., 86 (2005), p. 121903
[61] Appl. Phys. Lett., 101 (2012), p. 013117
[62] J. Cryst. Growth, 146 (1995), p. 193
[63] Appl. Surf. Sci., 164 (2000), p. 68
[64] Phys. Rev. B, 64 (2001), p. 8397
[65] Microsc. Microanal. Microstruct., 8 (1997), p. 229
[66] Surf. Sci., 457 (2000), p. 229
[67] Phys. Rev. B, 73 (2006), p. 075420
[68] Nanotechnology, 21 (2010), p. 155601
- , Fiber Lasers and Glass Photonics: Materials through Applications IV (2024), p. 50 | DOI:10.1117/12.3025888
- Dewetting upside-down: two-sided solid state dewetting of thin gold film on soft KBr substrate, International Journal of Materials Research, Volume 115 (2024) no. 2, p. 131 | DOI:10.1515/ijmr-2023-0124
- Rim nucleation and step-train orientation effects in SOI(111) dewetting, Surfaces and Interfaces, Volume 45 (2024), p. 103912 | DOI:10.1016/j.surfin.2024.103912
- Thermal Instability of Gold Thin Films, Coatings, Volume 13 (2023) no. 8, p. 1306 | DOI:10.3390/coatings13081306
- Transformation of bimetallic Ag–Cu thin films into plasmonically active composite nanostructures, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-37343-2
- Templated fingering during solid state dewetting, Acta Materialia, Volume 207 (2021), p. 116669 | DOI:10.1016/j.actamat.2021.116669
- Solid-State Dewetting Dynamics of Amorphous Ge Thin Films on Silicon Dioxide Substrates, Nanomaterials, Volume 10 (2020) no. 12, p. 2542 | DOI:10.3390/nano10122542
- Deterministic three-dimensional self-assembly of Si through a rimless and topology-preserving dewetting regime, Physical Review Materials, Volume 3 (2019) no. 10 | DOI:10.1103/physrevmaterials.3.103402
- Solid-State Dewetting in Polycrystalline Co Films on Native Oxide Si(100) by Kirkendall Effects, The Journal of Physical Chemistry C, Volume 123 (2019) no. 32, p. 19572 | DOI:10.1021/acs.jpcc.9b04226
- Modeling solid-state dewetting of a single-crystal binary alloy thin films, Journal of Applied Physics, Volume 123 (2018) no. 3 | DOI:10.1063/1.5011676
- Interplay between deoxidation and dewetting for ultrathin SOI films, Applied Physics Letters, Volume 110 (2017) no. 16 | DOI:10.1063/1.4980132
- Dewetting of patterned solid films: Towards a predictive modelling approach, Applied Physics Letters, Volume 110 (2017) no. 26 | DOI:10.1063/1.4990005
- Dewetting kinetics of metallic liquid films: Competition between unbalanced Young’s force and dissolutive reaction, Chemical Physics Letters, Volume 687 (2017), p. 91 | DOI:10.1016/j.cplett.2017.09.009
- Improvement of etching and cleaning methods for integration of raised source and drain in FD-SOI technologies, Microelectronic Engineering, Volume 180 (2017), p. 56 | DOI:10.1016/j.mee.2017.04.009
- Height transitions, shape evolution and coarsening of equilibrating quantum nanoislands, Modelling and Simulation in Materials Science and Engineering, Volume 25 (2017) no. 8, p. 085003 | DOI:10.1088/1361-651x/aa883d
- Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals, Nanotechnology, Volume 28 (2017) no. 4, p. 045306 | DOI:10.1088/1361-6528/28/4/045306
- Low thermal budget for Si and SiGe surface preparation for FD-SOI technology, Applied Surface Science, Volume 371 (2016), p. 436 | DOI:10.1016/j.apsusc.2016.02.228
- Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films, Journal of Applied Physics, Volume 120 (2016) no. 7 | DOI:10.1063/1.4961205
- High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy, Journal of Applied Physics, Volume 120 (2016) no. 8 | DOI:10.1063/1.4961212
- Fabrication of core–shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry, Nanotechnology, Volume 27 (2016) no. 30, p. 305602 | DOI:10.1088/0957-4484/27/30/305602
- Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting, RSC Advances, Volume 6 (2016) no. 92, p. 89380 | DOI:10.1039/c6ra16935j
- Templated Solid‐State Dewetting of Thin Silicon Films, Small, Volume 12 (2016) no. 44, p. 6115 | DOI:10.1002/smll.201601744
- How to control solid state dewetting: A short review, Surface Science Reports, Volume 71 (2016) no. 2, p. 391 | DOI:10.1016/j.surfrep.2016.03.002
- From Solid-State Dewetting of Ultrathin, Compressively Strained Silicon–Germanium-on-Insulator Films to Mastering the Stoichiometry of Si1–xGex Nanocrystals, The Journal of Physical Chemistry C, Volume 120 (2016) no. 13, p. 7412 | DOI:10.1021/acs.jpcc.6b01093
- Mechano-stimulated equilibration of gold nanoparticles on sapphire, Scripta Materialia, Volume 107 (2015), p. 149 | DOI:10.1016/j.scriptamat.2015.06.007
- Oxygen-induced inhibition of silicon-on-insulator dewetting, Applied Physics Letters, Volume 104 (2014) no. 6 | DOI:10.1063/1.4865243
- In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy, Journal of Applied Physics, Volume 116 (2014) no. 16 | DOI:10.1063/1.4898691
Cité par 27 documents. Sources : Crossref
Commentaires - Politique