Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies
[Analyse de lʼinfluence combinée du mouillage du substrat et de lʼélectromigration en surface sur la stabilité dʼune couche mince et les morphologies dynamiques]
Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 607-618.

Un modèle basé sur les équations aux dérivées partielles et qui combine lʼélectromigration de surface et le mouillage est developpé pour lʼanalyse de la stabilité morphologique de couches ultra-minces solides. La mobilité des adatomes est supposée anisotrope, et deux directions du champ électrique (parallèle et perpendiculaire à la surface) sont discutées et comparées. Des analyses de stabilité linéaire dʼéquations dʼévolution en approximation de petite inclinaison sont effectuées, suivies par des calculs dʼéquations dʼévolution complètement non linéaires et paramétriques, qui permettent des surplombs de surface. Les résultats révèlent des domaines de stabilité dans lʼespace des paramètres pour les couches mouillantes et non mouillantes, une intensité variable du champ électrique, des solutions non linéaires dʼéquilibre dans certains cas, ainsi quʼun comportement intéressant de grossissement pour les couches fortement mouillées.

A PDE-based model combining surface electromigration and wetting is developed for the analysis of morphological stability of ultrathin solid films. Adatom mobility is assumed anisotropic, and two directions of the electric field (parallel and perpendicular to the surface) are discussed and contrasted. Linear stability analyses of small-slope evolution equations are performed, followed by computations of fully nonlinear parametric evolution equations that permit surface overhangs. The results reveal parameter domains of instability for wetting and non-wetting films and variable electric field strength, nonlinear steady-state solutions in certain cases, and interesting coarsening behavior for strongly wetting films.

Publié le :
DOI : 10.1016/j.crhy.2013.06.009
Keywords: Electromigration, Wetting, Dynamics of thin solid films
Mot clés : Électromigration, Mouillage, Dynamique des couches minces solides

Mikhail Khenner 1

1 Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA
@article{CRPHYS_2013__14_7_607_0,
     author = {Mikhail Khenner},
     title = {Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies},
     journal = {Comptes Rendus. Physique},
     pages = {607--618},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.009},
     language = {en},
}
TY  - JOUR
AU  - Mikhail Khenner
TI  - Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 607
EP  - 618
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.009
LA  - en
ID  - CRPHYS_2013__14_7_607_0
ER  - 
%0 Journal Article
%A Mikhail Khenner
%T Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies
%J Comptes Rendus. Physique
%D 2013
%P 607-618
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.009
%G en
%F CRPHYS_2013__14_7_607_0
Mikhail Khenner. Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies. Comptes Rendus. Physique, Volume 14 (2013) no. 7, pp. 607-618. doi : 10.1016/j.crhy.2013.06.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.009/

[1] S. Stoyanov Current-induced step bunching at vicinal surfaces during crystal sublimation, Surf. Sci., Volume 370 (1997), p. 345

[2] D.J. Liu; J.D. Weeks; D. Kandel Current-induced step bending instability on vicinal surfaces, Phys. Rev. Lett., Volume 81 (1998), p. 2743

[3] M. Dufay; J.-M. Debierre; T. Frisch Electromigration-induced step meandering on vicinal surfaces: Nonlinear evolution equation, Phys. Rev. B, Volume 75 (2007), p. 045413

[4] J. Chang; O. Pierre-Louis; C. Misbah Birth and morphological evolution of step bunches under electromigration, Phys. Rev. Lett., Volume 96 (2006), p. 195901

[5] O. Pierre-Louis Local electromigration model for crystal surfaces, Phys. Rev. Lett., Volume 96 (2006), p. 135901

[6] J. Quah; D. Margetis Electromigration in macroscopic relaxation of stepped surfaces, Multiscale Model. Simul., Volume 8 (2010), p. 667

[7] V. Usov; C.O. Coileain; I.V. Shvets Influence of electromigration field on the step bunching process on Si(111), Phys. Rev. B, Volume 82 (2010), p. 153301

[8] J. Krug; H.T. Dobbs Current-induced faceting of crystal surfaces, Phys. Rev. Lett., Volume 73 (1994), p. 1947

[9] M. Schimschak; J. Krug Surface electromigration as a moving boundary value problem, Phys. Rev. Lett., Volume 78 (1997), p. 278

[10] F. Hausser; S. Rasch; A. Voigt The influence of electric fields on nanostructures-simulation and control, Math. Comput. Simul., Volume 80 (2010), pp. 1449-1457

[11] O. Pierre-Louis; T.L. Einstein Electromigration of single layer clusters, Phys. Rev. B, Volume 62 (2000), p. 13697

[12] F. Hausser; P. Kuhn; J. Krug; A. Voigt Morphological stability of electromigration-driven vacancy islands, Phys. Rev. E, Volume 75 (2007), p. 046210

[13] P. Kuhn; J. Krug; F. Hausser; A. Voigt Complex shape evolution of electromigration-driven single-layer islands, Phys. Rev. Lett., Volume 94 (2005), p. 166105

[14] F. Barakat; K. Martens; O. Pierre-Louis Nonlinear wavelength selection in surface faceting under electromigration, Phys. Rev. Lett., Volume 109 (2012), p. 056101

[15] D. Maroudas Surface morphological response of crystalline solids to mechanical stresses and electric fields, Surf. Sci. Rep., Volume 66 (2011), pp. 299-346

[16] V. Tomar; M.R. Gungor; D. Maroudas Current-induced stabilization of surface morphology in stressed solids, Phys. Rev. Lett., Volume 100 (2008), p. 036106

[17] L. Valladares; L.L. Felix; A.B. Dominguez; T. Mitrelias; F. Sfigakis; S.I. Khondaker; C.H.W. Barnes; Y. Majima Controlled electroplating and electromigration in nickel electrodes for nanogap formation, Nanotechnology, Volume 21 (2010), p. 445304

[18] T. Taychatanapat; K.I. Bolotin; F. Kuemmeth; D.C. Ralph Imaging electromigration during the formation of break junctions, Nano Lett., Volume 7 (2007), pp. 652-656

[19] G. Gardinowski; J. Schmeidel; H. Phnur; T. Block; C. Tegenkamp Switchable nanometer contacts: Ultrathin Ag nanostructures on Si(100), Appl. Phys. Lett., Volume 89 (2006), p. 063120

[20] Z.-J. Wu; P.S. Ho Size effect on the electron wind force for electromigration at the top metal-dielectric interface in nanoscale interconnects, Appl. Phys. Lett., Volume 101 (2012), p. 101601

[21] D. Solenov; K.A. Velizhanin Adsorbate transport on graphene by electromigration, Phys. Rev. Lett., Volume 109 (2012), p. 095504

[22] C.-H. Chiu; H. Gao Thin Films: Stresses and Mechanical Properties V (S.P. Baker et al., eds.), MRS Symp. Proc., vol. 356, Materials Research Society, Pittsburgh, USA, 1995, p. 33

[23] Z. Suo; Z. Zhang Epitaxial films stabilized by long-range forces, Phys. Rev. B, Volume 58 (1998), p. 5116

[24] M. Ortiz; E.A. Repetto; H. Si A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, Volume 47 (1999), p. 697

[25] Ya-Pu Zhao Morphological stability of epitaxial thin elastic films by van der Waals force, Arch. Appl. Mech., Volume 72 (2002), pp. 77-84

[26] J.-N. Aqua; T. Frisch; A. Verga Ordering of strained islands during surface growth, Phys. Rev. E, Volume 81 (2010), p. 021605

[27] T.O. Ogurtani; A. Celik; E.E. Oren Morphological evolution in a strained-heteroepitaxial solid droplet on a rigid substrate: Dynamical simulations, J. Appl. Phys., Volume 108 (2010), p. 063527

[28] A.A. Golovin; M.S. Levine; T.V. Savina; S.H. Davis Faceting instability in the presence of wetting interactions: A mechanism for the formation of quantum dots, Phys. Rev. B, Volume 70 (2004), p. 235342

[29] M.S. Levine; A.A. Golovin; S.H. Davis; P.W. Voorhees Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B, Volume 75 (2007), p. 205312

[30] Y. Pang; R. Huang Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films, Phys. Rev. B, Volume 74 (2006), p. 075413

[31] B.J. Spencer Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski–Krastanow islands, Phys. Rev. B, Volume 59 (1999), p. 2011

[32] S.P.A. Gill; T. Wang On the existence of a critical perturbation amplitude for the Stranski–Krastanov transition, Surf. Sci., Volume 602 (2008), p. 3560

[33] M. Khenner; W.T. Tekalign; M. Levine Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate, Eur. Phys. Lett., Volume 93 (2011), p. 26001

[34] M. Khenner Comparative study of a solid film dewetting in an attractive substrate potentials with the exponential and the algebraic decay, Math. Model. Nat. Phenom., Volume 3 (2008), pp. 16-29

[35] M. Khenner Morphologies and kinetics of a dewetting ultrathin solid film, Phys. Rev. B, Volume 77 (2008), p. 245445

[36] L.G. Wang; P. Kratzer; M. Scheffler; N. Moll Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy, Phys. Rev. Lett., Volume 82 (1999), p. 4042

[37] M.J. Beck; A. van de Walle; M. Asta Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B, Volume 70 (2004), p. 205337

[38] G. Tryggvason; B. Bunner; A. Esmaeeli; D. Juric; N. Al-Rawahi; W. Tauber; J. Han; S. Nas; Y.-J. Jan A front-tracking method for the computations of multiphase flow, J. Comput. Phys., Volume 169 (2001), p. 708

[39] J.A. Sethian A review of recent numerical algorithms for hypersurfaces moving with curvature-dependent speed, J. Differ. Geom., Volume 31 (1990), p. 131

[40] R.C. Brower; D.A. Kessler; J. Koplik; H. Levine Geometrical models of interface evolution, Phys. Rev. A, Volume 29 (1984), pp. 1335-1342

[41] C. Ograin; J. Lowengrub Geometric evolution law for modeling strongly anisotropic thin-film morphology, Phys. Rev. E, Volume 84 (2011), p. 061606

[42] W.W. Mullins Solid surface morphologies governed by capillarity, Metal Surfaces: Structure, Energetics and Kinetics, American Society for Metals, Cleveland, OH, 1963, pp. 17-66

[43] M. Khenner; A. Averbuch; M. Israeli; M. Nathan Numerical simulation of grain boundary grooving by level set method, J. Comput. Phys., Volume 170 (2001), p. 764

[44] R.M. Bradley Electromigration-induced propagation of nonlinear surface waves, Phys. Rev. E, Volume 65 (2002), p. 036603

[45] T.V. Savina; A.A. Golovin; S.H. Davis; A.A. Nepomnyashchy; P.W. Voorhees Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, Volume 67 (2003), p. 021606

Cité par Sources :

Commentaires - Politique