[Étalement de gouttelettes : théorie et expériences]
Une hypothèse est présentée, qui différencie lʼétalement produit par des forces hydrodynamiques de celui engendré par des effets cinétiques ou moléculaires, permettant ainsi de séparer les régimes suivant les vitesses des lignes de contact et les angles de raccordement. Ce critère est discuté dans le cas de plusieurs applications expérimentales.
A hypothesis is presented that distinguishes the characteristics of spreading by hydrodynamic forces from those driven by molecular/kinetic effects, demarking the regimes by contact-line speeds and contact angles. Several applications of the criterion to experiments are discussed.
Mots-clés : Dispersion, Mouillage, Lignes de contact
Michael J. Davis 1 ; Stephen H. Davis 1
@article{CRPHYS_2013__14_7_629_0, author = {Michael J. Davis and Stephen H. Davis}, title = {Droplet spreading: {Theory} and experiments}, journal = {Comptes Rendus. Physique}, pages = {629--635}, publisher = {Elsevier}, volume = {14}, number = {7}, year = {2013}, doi = {10.1016/j.crhy.2013.06.011}, language = {en}, }
Michael J. Davis; Stephen H. Davis. Droplet spreading: Theory and experiments. Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 629-635. doi : 10.1016/j.crhy.2013.06.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.011/
[1] Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., Volume 35 (1971), pp. 85-101
[2] On the motion of a fluid–fluid interface along a solid surface, J. Fluid Mech., Volume 65 (1974), pp. 71-95
[3] Experiments on isothermal and non-isothermal spreading, J. Fluid Mech., Volume 257 (1993), pp. 463-483
[4] The spreading of volatile liquid droplets on heated surfaces, Phys. Fluids, Volume 7 (1995), p. 248
[5] Molecular dynamics simulations of contact line motion, Mater. Res. Soc. Symp. Proc., Volume 177 (1990), pp. 411-422
[6] Molecular dynamics of drop spreading on a solid surface, Phys. Rev. Lett., Volume 67 (1991), pp. 3539-3542
[7] The spreading of silicone oil drops on horizontal surfaces, J. Phys. D: Appl. Phys., Volume 12 (1979), pp. 1473-1484
[8] Dynamics of wetting: Effects of surface roughness, J. Phys. Chem., Volume 90 (1986), pp. 5845-5849
[9] Experiments on a spreading drop and its contact angle on a solid, J. Colloid Interface Sci., Volume 122 (1988), pp. 60-72
[10] Kinetics of liquid/liquid displacement, J. Colloid Interface Sci., Volume 30 (1969), pp. 421-423
[11]
, Marcel Dekker, New York (1993), pp. 251-309[12] Atomic dynamics and Marangoni films during liquid-metal spreading, Nat. Mater., Volume 3 (2004), pp. 903-909
[13] Kinetics of high-temperature spreading, Curr. Opin. Solid State Mater. Sci., Volume 9 (2005), pp. 167-173
[14] The moving contact line: The slip boundary condition, J. Fluid Mech., Volume 77 (1976), pp. 665-684
[15] The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech., Volume 121 (1982), pp. 169-194
[16] Hydrodynamics of wetting, Izv. Akad. Nauk SSSR, Meh. Židk. Gaza, Volume 5 (1976), pp. 76-84
[17] Spreading of a drop by capillary action, J. Fluid Mech., Volume 168 (1986), pp. 425-442
[18] Nonreactive spreading at high-temperature revisited for metal systems via molecular dynamics, Langmuir, Volume 25 (2009), pp. 11450-11458
[19] Role of substrate commensurability on non-reactive wetting kinetics of liquid metals, Acta Mater., Volume 58 (2010), pp. 2068-2078
[20] Spreading kinetics of liquid drops on solids, J. Colloid Interface Sci., Volume 56 (1976), pp. 460-468
[21] Spreading of droplets of nonvolatile liquids over a flat solid surface, Colloid J. USSR, Volume 45 (1983), pp. 1009-1015
[22] Non-isothermal spreading of liquid drops on horizontal plates, J. Fluid Mech., Volume 229 (1991), pp. 365-388
[23] Nonreactive spreading at high temperature: Molten metals and oxides on molybdenum, Phys. Rev. E, Volume 76 (2007), p. 041602
[24] Droplet spreading: Partial wetting regime revisited, Langmuir, Volume 15 (1999), pp. 2209-2216
[25] Modeling dissolution and spreading of Bi–Sn alloy drops on a Bi substrate, Acta Mater., Volume 57 (2010), pp. 3110-3122
[26] Initial stages of wetting of alumina by reactive CuAgTi alloys, Scr. Mater., Volume 65 (2010), pp. 13-16
- Wetting behavior of Cu droplets on Fe Surfaces: Insights from molecular dynamics simulations, Computational Materials Science, Volume 242 (2024), p. 113106 | DOI:10.1016/j.commatsci.2024.113106
- A New Model for Describing the Glass to Metal Interaction in Forming, Glass Europe, Volume 2 (2024), p. 137 | DOI:10.52825/glass-europe.v2i.976
- Development of a new method for analyzing the behavior of rapidly dissolving films in contact with liquids, Journal of Drug Delivery Science and Technology, Volume 101 (2024), p. 106205 | DOI:10.1016/j.jddst.2024.106205
- Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications, Advances in Colloid and Interface Science, Volume 313 (2023), p. 102861 | DOI:10.1016/j.cis.2023.102861
- Effective boundary conditions for dynamic contact angle hysteresis on chemically inhomogeneous surfaces, Journal of Fluid Mechanics, Volume 935 (2022) | DOI:10.1017/jfm.2022.33
- Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges, The European Physical Journal Special Topics, Volume 229 (2020) no. 10, p. 1945 | DOI:10.1140/epjst/e2020-900236-8
- Reflections on reflections of Dieter Bothe on the ‘litmus test’ for mathematical models of dynamic wetting, The European Physical Journal Special Topics, Volume 229 (2020) no. 10, p. 1989 | DOI:10.1140/epjst/e2020-000148-0
- Emollients for cosmetic formulations: Towards relationships between physico-chemical properties and sensory perceptions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 536 (2018), p. 156 | DOI:10.1016/j.colsurfa.2017.07.025
- Accelerated spreading of inviscid droplets prompted by the yielding of strongly elastic interfacial films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 554 (2018), p. 326 | DOI:10.1016/j.colsurfa.2018.06.026
- Forced versus Spontaneous Spreading of Liquids, Langmuir, Volume 32 (2016) no. 40, p. 10153 | DOI:10.1021/acs.langmuir.6b00747
Cité par 10 documents. Sources : Crossref
Commentaires - Politique