Comptes Rendus
Trends and perspectives in solid-state wetting / Mouillage solide–solide : tendances et perspectives
Droplet spreading: Theory and experiments
[Étalement de gouttelettes : théorie et expériences]
Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 629-635.

Une hypothèse est présentée, qui différencie lʼétalement produit par des forces hydrodynamiques de celui engendré par des effets cinétiques ou moléculaires, permettant ainsi de séparer les régimes suivant les vitesses des lignes de contact et les angles de raccordement. Ce critère est discuté dans le cas de plusieurs applications expérimentales.

A hypothesis is presented that distinguishes the characteristics of spreading by hydrodynamic forces from those driven by molecular/kinetic effects, demarking the regimes by contact-line speeds and contact angles. Several applications of the criterion to experiments are discussed.

Publié le :
DOI : 10.1016/j.crhy.2013.06.011
Keywords: Spreading, Wetting, Contact lines
Mots-clés : Dispersion, Mouillage, Lignes de contact

Michael J. Davis 1 ; Stephen H. Davis 1

1 Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering Science and Applied Science, Northwestern University, Evanston, IL 60208, USA
@article{CRPHYS_2013__14_7_629_0,
     author = {Michael J. Davis and Stephen H. Davis},
     title = {Droplet spreading: {Theory} and experiments},
     journal = {Comptes Rendus. Physique},
     pages = {629--635},
     publisher = {Elsevier},
     volume = {14},
     number = {7},
     year = {2013},
     doi = {10.1016/j.crhy.2013.06.011},
     language = {en},
}
TY  - JOUR
AU  - Michael J. Davis
AU  - Stephen H. Davis
TI  - Droplet spreading: Theory and experiments
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 629
EP  - 635
VL  - 14
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.06.011
LA  - en
ID  - CRPHYS_2013__14_7_629_0
ER  - 
%0 Journal Article
%A Michael J. Davis
%A Stephen H. Davis
%T Droplet spreading: Theory and experiments
%J Comptes Rendus. Physique
%D 2013
%P 629-635
%V 14
%N 7
%I Elsevier
%R 10.1016/j.crhy.2013.06.011
%G en
%F CRPHYS_2013__14_7_629_0
Michael J. Davis; Stephen H. Davis. Droplet spreading: Theory and experiments. Comptes Rendus. Physique, Trends and perspectives in solid-state wetting / Mouillage solide-solide : tendances et perspectives, Volume 14 (2013) no. 7, pp. 629-635. doi : 10.1016/j.crhy.2013.06.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.06.011/

[1] C. Huh; L.E. Scriven Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., Volume 35 (1971), pp. 85-101

[2] E.B. Dussan V; S.H. Davis On the motion of a fluid–fluid interface along a solid surface, J. Fluid Mech., Volume 65 (1974), pp. 71-95

[3] P. Ehrhard Experiments on isothermal and non-isothermal spreading, J. Fluid Mech., Volume 257 (1993), pp. 463-483

[4] D.M. Anderson; S.H. Davis The spreading of volatile liquid droplets on heated surfaces, Phys. Fluids, Volume 7 (1995), p. 248

[5] M.O. Robbins; P.A. Thompson Molecular dynamics simulations of contact line motion, Mater. Res. Soc. Symp. Proc., Volume 177 (1990), pp. 411-422

[6] J. Yang; J. Koplik; J.R. Banavar Molecular dynamics of drop spreading on a solid surface, Phys. Rev. Lett., Volume 67 (1991), pp. 3539-3542

[7] L.H. Tanner The spreading of silicone oil drops on horizontal surfaces, J. Phys. D: Appl. Phys., Volume 12 (1979), pp. 1473-1484

[8] A.M. Cazabat; M.A. Cohen Stuart Dynamics of wetting: Effects of surface roughness, J. Phys. Chem., Volume 90 (1986), pp. 5845-5849

[9] J.D. Chen Experiments on a spreading drop and its contact angle on a solid, J. Colloid Interface Sci., Volume 122 (1988), pp. 60-72

[10] T.D. Blake; J.M. Haynes Kinetics of liquid/liquid displacement, J. Colloid Interface Sci., Volume 30 (1969), pp. 421-423

[11] T.D. Blake; J.C. Berg, Marcel Dekker, New York (1993), pp. 251-309

[12] E. Saiz; A.P. Tomsia Atomic dynamics and Marangoni films during liquid-metal spreading, Nat. Mater., Volume 3 (2004), pp. 903-909

[13] E. Saiz; A.P. Tomsia Kinetics of high-temperature spreading, Curr. Opin. Solid State Mater. Sci., Volume 9 (2005), pp. 167-173

[14] E.B. Dussan V The moving contact line: The slip boundary condition, J. Fluid Mech., Volume 77 (1976), pp. 665-684

[15] R.G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech., Volume 121 (1982), pp. 169-194

[16] O.V. Voinov Hydrodynamics of wetting, Izv. Akad. Nauk SSSR, Meh. Židk. Gaza, Volume 5 (1976), pp. 76-84

[17] L.M. Hocking; A.D. Rivers Spreading of a drop by capillary action, J. Fluid Mech., Volume 168 (1986), pp. 425-442

[18] M. Benhassine; E. Saiz; A.P. Tomsia; J. De Coninck Nonreactive spreading at high-temperature revisited for metal systems via molecular dynamics, Langmuir, Volume 25 (2009), pp. 11450-11458

[19] M. Benhassine; E. Saiz; A.P. Tomsia; J. De Coninck Role of substrate commensurability on non-reactive wetting kinetics of liquid metals, Acta Mater., Volume 58 (2010), pp. 2068-2078

[20] J. Lopez; C.A. Miller; E. Ruckenstein Spreading kinetics of liquid drops on solids, J. Colloid Interface Sci., Volume 56 (1976), pp. 460-468

[21] V.M. Starov Spreading of droplets of nonvolatile liquids over a flat solid surface, Colloid J. USSR, Volume 45 (1983), pp. 1009-1015

[22] P. Ehrhard; S.H. Davis Non-isothermal spreading of liquid drops on horizontal plates, J. Fluid Mech., Volume 229 (1991), pp. 365-388

[23] E. Saiz; A.P. Tomsia; N. Rauch; C. Scheu; M. Ruehle; M. Benhassine; D. Seveno; J. De Coninck; S. Lopez-Esteban Nonreactive spreading at high temperature: Molten metals and oxides on molybdenum, Phys. Rev. E, Volume 76 (2007), p. 041602

[24] M.J. De Ruijter; J. De Coninck; G. Oshanin Droplet spreading: Partial wetting regime revisited, Langmuir, Volume 15 (1999), pp. 2209-2216

[25] S. Su; L. Yin; Y. Sin; B.T. Murray; T.J. Singler Modeling dissolution and spreading of Bi–Sn alloy drops on a Bi substrate, Acta Mater., Volume 57 (2010), pp. 3110-3122

[26] O. Kozlova; R. Voytovych; N. Eustathopoulos Initial stages of wetting of alumina by reactive CuAgTi alloys, Scr. Mater., Volume 65 (2010), pp. 13-16

  • Luyao Cheng; Haojie Mei; Liang Chen; Feifei Wang; Boqiang Wu; Yang Yang; Jinfu Li; Lingti Kong Wetting behavior of Cu droplets on Fe Surfaces: Insights from molecular dynamics simulations, Computational Materials Science, Volume 242 (2024), p. 113106 | DOI:10.1016/j.commatsci.2024.113106
  • Christian Roos; Jan-Hendrik Veltmaat; Philipp Jacobs A New Model for Describing the Glass to Metal Interaction in Forming, Glass Europe, Volume 2 (2024), p. 137 | DOI:10.52825/glass-europe.v2i.976
  • Mathieu Reuther; Nicolas Rollet; Frédéric Debeaufort; Odile Chambin Development of a new method for analyzing the behavior of rapidly dissolving films in contact with liquids, Journal of Drug Delivery Science and Technology, Volume 101 (2024), p. 106205 | DOI:10.1016/j.jddst.2024.106205
  • Yichuan Zhang; Mingming Guo; David Seveno; Joël De Coninck Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications, Advances in Colloid and Interface Science, Volume 313 (2023), p. 102861 | DOI:10.1016/j.cis.2023.102861
  • Zhen Zhang; Xianmin Xu Effective boundary conditions for dynamic contact angle hysteresis on chemically inhomogeneous surfaces, Journal of Fluid Mechanics, Volume 935 (2022) | DOI:10.1017/jfm.2022.33
  • Yulii D. Shikhmurzaev Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges, The European Physical Journal Special Topics, Volume 229 (2020) no. 10, p. 1945 | DOI:10.1140/epjst/e2020-900236-8
  • Yulii D. Shikhmurzaev Reflections on reflections of Dieter Bothe on the ‘litmus test’ for mathematical models of dynamic wetting, The European Physical Journal Special Topics, Volume 229 (2020) no. 10, p. 1989 | DOI:10.1140/epjst/e2020-000148-0
  • Christina Chao; Célina Génot; Corinne Rodriguez; Harmonie Magniez; Sandrine Lacourt; Aurélie Fievez; Christophe Len; Isabelle Pezron; Denis Luart; Elisabeth van Hecke Emollients for cosmetic formulations: Towards relationships between physico-chemical properties and sensory perceptions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 536 (2018), p. 156 | DOI:10.1016/j.colsurfa.2017.07.025
  • Emily James; Suparit Tangparitkul; Anju Brooker; Carlos Amador; Andrew Graydon; Mauro Vaccaro; Olivier J. Cayre; Timothy N. Hunter; David Harbottle Accelerated spreading of inviscid droplets prompted by the yielding of strongly elastic interfacial films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 554 (2018), p. 326 | DOI:10.1016/j.colsurfa.2018.06.026
  • A. Mohammad Karim; S. H. Davis; H. P. Kavehpour Forced versus Spontaneous Spreading of Liquids, Langmuir, Volume 32 (2016) no. 40, p. 10153 | DOI:10.1021/acs.langmuir.6b00747

Cité par 10 documents. Sources : Crossref

Commentaires - Politique