Comptes Rendus
Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces
[Études nanoscopiques de parois de domaines ferroélectriques comme interfaces élastiques piégées]
Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 667-684.

La compétition entre lʼélasticité dʼune interface et le piégeage par un potentiel désordonné confère à cette dernière une configuration rugueuse auto-affine caractéristique ainsi quʼune réponse dynamique complexe aux forces externes. Cette approche de physique statistique fournit une description théorique générale du comportement de systèmes aussi divers que la propagation de fractures, les lignes de mouillage, les fronts de combustion et les phénomènes de croissance de surface. Dans les matériaux ferroélectriques, les parois de domaines, qui séparent les régions où la polarisation est orientée différemment, forment un autre exemple dʼinterfaces élastiques piégées, et constituent à ce titre un système modèle particulièrement utile. Réciproquement, une meilleure compréhension de ces propriétés physiques fondamentales permet de déterminer les paramètres-clés contrôlant la nucléation, la croissance et la stabilité des domaines et, de ce fait, lʼamélioration des performances des matériaux ferroélectriques pour des applications telles que mémoires, senseurs et actionneurs. Dans cette revue, nous nous focalisons sur des mesures de parois de domaines ferroélectriques individuelles par microscopie à force atomique en mode piézoréponse, qui permettent de déterminer leur configuration statique et leur réponse dynamique avec une résolution nanométrique sur plusieurs ordres de grandeur de longueur et de vitesse. Combiné au contrôle précis du champ électrique appliqué, de la température, de la contrainte, et de la nature et densité des défauts présents dans lʼéchantillon, ce système expérimental permet non seulement une démonstration directe des phénomènes de reptation et de rugosité, mais également dʼappréhender certains aspects moins connus de phénomènes hors équilibre ainsi que les effets dúne structure plus complexe, tant au niveau de lʼinterface elle-même que du potentiel désordonné de piégeage.

The competition between elasticity and pinning of an interface in a fluctuating potential energy landscape gives rise to characteristic self-affine roughening and a complex dynamic response to applied forces. This statistical physics approach provides a general framework in which the behaviour of systems as diverse as propagating fractures, wetting lines, burning fronts or surface growth can be described. Domain walls separating regions with different polarisation orientation in ferroelectric materials are another example of pinned elastic interfaces, and can serve as a particularly useful model system. Reciprocally, a better understanding of this fundamental physics allows key parameters controlling domain switching, growth, and stability to be determined, and used to improve the performance of ferroelectric materials in applications such as memories, sensors, and actuators. In this review, we focus on piezoresponse force microscopy measurements of individual ferroelectric domain walls, allowing their static configuration and dynamic response to be accessed with nanoscale resolution over multiple orders of length scale and velocity. Combined with precise control over the applied electric field, temperature, and strain, and the ability to influence the type and density of defects present in the sample, this experimental system has allowed not only a direct demonstration of creep motion and roughening, but provides an opportunity to test less-well-understood aspects of out-of-equilibrium behaviour, and the effects of greater complexity in the structure of both the interface and the disorder landscape pinning it.

Publié le :
DOI : 10.1016/j.crhy.2013.08.004
Keywords: Domain walls, Piezoresponse force microscopy, Creep, Roughness, Disorder, Out-of-equilibrium
Mot clés : Parois de domaines, Microscopie à force atomique en mode piézoréponse, Reptation, Rugosité, Désordre, Hors équilibre

Patrycja Paruch 1 ; Jill Guyonnet 1

1 MaNEP–DPMC, Université de Genève, 24, quai Ernest-Ansermet, 1211 Geneva, Switzerland
@article{CRPHYS_2013__14_8_667_0,
     author = {Patrycja Paruch and Jill Guyonnet},
     title = {Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces},
     journal = {Comptes Rendus. Physique},
     pages = {667--684},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.08.004},
     language = {en},
}
TY  - JOUR
AU  - Patrycja Paruch
AU  - Jill Guyonnet
TI  - Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 667
EP  - 684
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.08.004
LA  - en
ID  - CRPHYS_2013__14_8_667_0
ER  - 
%0 Journal Article
%A Patrycja Paruch
%A Jill Guyonnet
%T Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces
%J Comptes Rendus. Physique
%D 2013
%P 667-684
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.08.004
%G en
%F CRPHYS_2013__14_8_667_0
Patrycja Paruch; Jill Guyonnet. Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 667-684. doi : 10.1016/j.crhy.2013.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.004/

[1] M.E. Lines; A.M. Glass Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977

[2] T. Mitsui; J. Furuichi Domain structure of Rochelle salt and KH2PO4, Phys. Rev., Volume 90 (1953), p. 193

[3] V.A. Zhirnov A contribution to the theory of domain walls in ferroelectrics, Sov. Phys. JETP, Volume 35 (1959), p. 822

[4] B. Meyer; D. Vanderbilt Ab initio study of ferroelectric domain walls in PbTiO3, Phys. Rev. B, Volume 65 (2002), p. 104111

[5] C.-L. Jia; K.W. Urban; M. Alexe; D. Hesse; I. Vrejoiu Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3, Science, Volume 331 (2011), p. 1420

[6] J.F. Scott Ferroelectric Memories, Springer, Berlin, 2000

[7] R. Waser; A. Rüdiger Pushing towards the digital storage limit, Nat. Mater., Volume 3 (2004), p. 81

[8] J.M. Herbert Ferroelectric Transducers and Sensors, Gordon and Breach, New York, 1982

[9] D. Damjanovic; P. Muralt; N. Setter Ferroelectric sensors, IEEE Sens. J., Volume 1 (2001), p. 191

[10] A.K.S. Kumar; P. Paruch; J.M. Triscone; W. Daniau; S. Ballandras; L. Pellegrino; D. Marré; T. Tybell High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Appl. Phys. Lett., Volume 85 (2004), p. 1757

[11] V.M. Fridkin Photoferroelectrics, Springer-Verlag, Berlin, 1979

[12] G. Catalan; J. Seidel; R. Ramesh; J.F. Scott Domain wall nanoelectronics, Rev. Mod. Phys., Volume 84 (2012), p. 119

[13] E.K.H. Salje Multiferroic boundaries as active memory devices: trajectories towards domain boundary engineering, ChemPhysChem, Volume 11 (2010), p. 940

[14] H. Béa; P. Paruch Multiferroics: a way forward along domain walls, Nat. Mater., Volume 8 (2009), p. 168

[15] S.A. Kukushkin; A.V. Osipov Thermodynamics and kinetics of switching effects in ferroelectrics, Phys. Rev. B, Volume 65 (2002), p. 174101

[16] A.N. Morozovska; E.A. Eliseev Screening and size effects on the nanodomain tailoring in ferroelectrics semiconductors, Phys. Rev. B, Volume 73 (2006), p. 104440

[17] E.A. Eliseev; A.N. Morozovska; G.S. Svechnikov; E.L. Rumyantsev; E.I. Shishkin; V.Y. Shur; S.V. Kalinin Screening and retardation effects on 180°-domain wall motion in ferroelectrics: wall velocity and no linear dynamics due to polarisation–screening charge interactions, Phys. Rev. B, Volume 78 (2008), p. 245509

[18] A.N. Morozovska; E.A. Eliseev; Y. Li; S.V. Svechnikov; P. Maksymovych; V.Y. Shur; V. Gopalan; L.-Q. Chen; S.V. Kalinin Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau–Ginzburg–Devonshire approach, Phys. Rev. B, Volume 80 (2009), p. 214110

[19] A.N. Morozovska; S.V. Svechnikov; E.A. Eliseev; B.J. Rodriguez; S. Jesse; S.V. Kalinin Local polarization switching in the presence of surface-charged defects: microscopic mechanisms and piezoresponse force spectroscopy observations, Phys. Rev. B, Volume 78 (2008), p. 054101

[20] P. Mokrý; Y. Wang; A.K. Tagantsev; D. Damjanovic; I. Stolichnov; N. Setter Evidence for dielectric aging due to progressive 180° domain wall pinning in polydomain Pb(Zr0.45Ti0.55)O3 thin films, Phys. Rev. B, Volume 79 (2009), p. 054104

[21] S. Pöykkö; D.J. Chadi Ab initio study of 180° domain wall energy and structure in PbTiO3, Appl. Phys. Lett., Volume 75 (1999), p. 2830

[22] L. He; D. Vanderbilt First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3, Phys. Rev. B, Volume 68 (2003), p. 134103

[23] D. Lee; R.K. Behera; P. Wu; H. Xu; Y.L. Li; S.B. Sinnott; W.R. Phillpot; L.Q. Chen; V. Gopalan Mixed Bloch–Neel–Ising character of 180° ferroelectric domain walls, Phys. Rev. B, Volume 80 (2009), p. 060102

[24] P. Paruch; T. Giamarchi; T. Tybell; J.-M. Triscone Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films, J. Appl. Phys., Volume 100 (2006), p. 051608

[25] T. Giamarchi; A.B. Kolton; A. Rosso Dynamics of disordered elastic systems (M.C. Miguel; J.M. Rubi, eds.), Jamming, Yielding and Irreversible Deformation in Condensed Matter, Springer-Verlag, Berlin, 2006, p. 91 | arXiv

[26] P. Paruch; T. Giamarchi; J.-M. Triscone Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films, Springer, Berlin/Heidelberg, 2007 | arXiv

[27] A.-L. Barabasi; H.E. Stanley Fractal Concepts in Surface Growth, Cambridge University Press, New York, 1995

[28] G. Blatter; M.V. Feigelʼman; V.B. Geshkenbein; A.I. Larkin; V.M. Vinokur Vortices in high-temperature superconductors, Rev. Mod. Phys., Volume 66 (1994), p. 1125

[29] E. Agoritsas; V. Lecomte; T. Giamarchi Disordered elastic systems and one-dimensional interfaces, Physica B, Volume 407 (2012), p. 1725

[30] E. Agoritsas; S. Bustingorry; V. Lecomte; G. Schehr; T. Giamarchi Finite-temperature and finite-time scaling of the directed polymer free-energy with respect to its geometrical fluctuations, Phys. Rev. E, Volume 86 (2012), p. 031144

[31] T. Nattermann Interface phenomenology, dipolar interaction, and the dimensionality dependence of the incommensurate–commensurate transition, J. Phys. C, Volume 16 (1983), p. 4125

[32] T. Emig; T. Nattermann Disorder driven roughening transitions of elastic manifolds and periodic elastic media, Eur. Phys. J. B, Volume 8 (1999), p. 525

[33] L. Landau; E. Lifshitz Theory of the dispersion of magnetic permeability in ferromagnetic bodies, Z. Phys. Sov., Volume 8 (1935), p. 153

[34] C. Kittel Theory of the structure of ferromagnetic domains in films and small particles, Phys. Rev., Volume 70 (1946), p. 965

[35] T. Giamarchi; S. Bhattacharya Vortex phases (Claude Berthier; Laurent P. Levy; Gerard Martinez, eds.), High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, Springer-Verlag, Berlin, 2002, p. 314 | arXiv

[36] T. Halpin-Healy Directed polymers in random media probability distributions, Phys. Rev. A, Volume 44 (1991), p. R3415

[37] M. Mézard; G. Parisi Replica field theory for random manifolds, J. Phys. I, Volume 1 (1991), p. 809

[38] A. Rosso; R. Santachiara; W. Krauth Geometry of Gaussian signals, J. Stat. Mech. Theory Exp. (2005), p. L08001

[39] A.-L. Barabasi; R. Bourbonnais; M. Jensen; J. Kertesz; T. Vicsek; Y.-C. Zhang Multifractality of growing surfaces, Phys. Rev. A, Volume 45 (1992), p. R6951

[40] S. Bustingorry; A.B. Kolton; T. Giamarchi Thermal rounding of the depinning transition, Europhys. Lett., Volume 81 (2008), p. 26005

[41] R.C. Miller; G. Weinreich Mechanism for the sidewise motion of 180° domain walls in barium titanate, Phys. Rev., Volume 117 (1960), p. 1460

[42] W.J. Merz Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev., Volume 95 (1954), p. 690

[43] F. Fatuzzo; W.J. Merz Switching mechanism in triglycine sulfate and other ferroelectrics, Phys. Rev., Volume 116 (1959), p. 61

[44] Y.-H. Shin; I. Grinberg; I.-W. Chen; A.M. Rappe Nucleation and growth mechanism of ferroelectric domain-wall motion, Nature, Volume 449 (2007), p. 881

[45] Y. Ishibashi; Y. Takagi Note on ferroelectric domain switching, J. Phys. Soc. Jpn., Volume 31 (1971), p. 506

[46] Y. Ishibashi Polarization Reversals in Ferroelectrics, Gordon and Breach, Amsterdam, 1996

[47] V.Y. Shur Fast Polarisation Reversal Process: Evolution of Ferroelectric Domain Structure in Thin Films, Gordon and Breach, Amsterdam, 1996

[48] T. Natterman; T. Emig A new disorder-driven roughening transition of charge-density waves and flux-line lattices, Phys. Rev. Lett., Volume 79 (1997), p. 5090

[49] T. Nattermann Interface roughening in systems with quenched random impurities, Europhys. Lett., Volume 4 (1987), p. 1241

[50] T. Nattermann; Y. Shapir; I. Vilfan Interface pinning and dynamics in random systems, Phys. Rev. B, Volume 42 (1990), p. 8577

[51] D. Damjanovic Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., Volume 61 (1998), p. 1267

[52] D.V. Taylor; D. Damjanovic Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields, J. Appl. Phys., Volume 82 (1997), p. 1973

[53] D.V. Taylor; D. Damjanovic Domain wall pinning contribution to the nonlinear dielectric permittivity in Pb(Zr,Ti)O3 thin films, Appl. Phys. Lett., Volume 73 (1998), p. 2045

[54] D. Damjanovic Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric–ferroelastic domain walls, Phys. Rev. B, Volume 55 (1997), p. R649

[55] D. Damjanovic Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics, J. Appl. Phys., Volume 82 (1997), p. 1788

[56] W. Kleemann; P. Licinio; T. Woike; R. Pankrath Dynamic light scattering at domains and nano clusters in a relaxor ferroelectric, Phys. Rev. Lett., Volume 86 (2001), p. 220101

[57] V. Mueller; Y. Shchur; H. Beige; S. Mattauch; J. Glinnemann; G. Heger Non-Debye domain wall response in KH2PO4, Phys. Rev. B, Volume 65 (2002), p. 134102

[58] J. Banys; J. Macutkevic; R. Grigalaitis; W. Kleemann Dynamics of nanoscale polar regions and critical behavior of the uniaxial relaxor Sr0.61Ba0.39Nb2O6:Co, Phys. Rev. B, Volume 72 (2005), p. 024106

[59] W. Kleemann; J. Dec; S. Miga; R. Pankrath Non-Debye domain-wall-induced dielectric response in Sr0.61 − xCexBa0.39Nb2O6, Phys. Rev. B, Volume 65 (2002), p. 220101

[60] D.R. Taylor; J.T. Love; G.J. Topping; J.G.A. Dane Crossover from pure to random-field critical susceptibility in KH2AsxP1 − xO4, Phys. Rev. B, Volume 72 (2005), p. 052109

[61] W. Kleemann Universal domain wall dynamics in disordered ferroic materials, Annu. Rev. Mater. Res., Volume 37 (2007), p. 415

[62] T. Braun; W. Kleeman; J. Dec; P.A. Thomas Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4, Phys. Rev. Lett., Volume 94 (2005), p. 117601

[63] T.J. Yang; V. Gopalan; P.J. Swart; U. Mohadeen Direct observation of pinning and bowing of a single ferroelectric domain wall, Phys. Rev. Lett., Volume 82 (1999), p. 4106

[64] S.V. Kalinin; B.J. Rodriguez; S. Jesse; J. Shin; A.P. Baddorf; P. Gupta; H. Jain; D.B. Williams; A. Gruverman Vector piezoresponse force microscopy, Microsc. Microanal., Volume 12 (2006), p. 206

[65] S.V. Kalinin; A.N. Morozovska; L.Q. Chen; B.J. Rodriguez Local polarization dynamics in ferroelectric materials, Rep. Prog. Phys., Volume 73 (2010), p. 056502

[66] A. Gruverman; S.V. Kalinin Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics, J. Mater. Sci., Volume 41 (2006), p. 107

[67] P. Paruch Atomic force microscopy studies of ferroelectric domain in epitaxial PbZr0.2Ti0.8O3 thin films and the static and dynamic behaviour of ferroelectric domain walls, 2004 (PhD thesis)

[68] S. Jesse; B.J. Rodriguez; S. Choudhury; A.P. Baddorf; I. Vrejoiu; D. Hesse; M. Alexe; E.A. Eliseev; A.N. Morozovska; J. Zhang; L.-Q. Chen; S.V. Kalinin Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials, Nat. Mater., Volume 7 (2008), p. 209

[69] J. Guyonnet; H. Béa; F. Guy; S. Gariglio; S. Fusil; K. Bouzehouane; J.-M. Triscone; P. Paruch Shear effects in lateral piezoresponse force microscopy at 180° ferroelectric domain walls, Appl. Phys. Lett., Volume 95 (2009), p. 132902

[70] J. Guyonnet; H. Béa; P. Paruch Lateral piezoresponse across ferroelectric domain walls in thin films, J. Appl. Phys., Volume 108 (2010), p. 042002

[71] S. Lei; E.A. Eliseev; A.N. Morozovska; R.C. Haislmeier; T.T.A. Lummen; W. Cao; S.V. Kalinin; V. Gopalan Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall, Phys. Rev. B, Volume 86 (2012), p. 134115

[72] J. Seidel; L.W. Martin; Q. He; Q. Zhan; Y.-H. Chu; A. Rother; M.E. Hawkridge; P. Maksymovych; P. Yu; M. Gajek; N. Balke; S.V. Kalinin; S. Gemming; F. Want; G. Catalan; J.F. Scott; N.A. Spaldin; J. Orenstein; R. Ramesh Conduction at domain walls in oxide multiferroics, Nat. Mater., Volume 8 (2009), p. 229

[73] S. Farokhipoor; B. Noheda Conduction through 71° domain walls in BiFeO3 thin films, Phys. Rev. Lett., Volume 107 (2011), p. 127601

[74] J. Guyonnet; I. Gaponenko; S. Gariglio; P. Paruch Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films, Adv. Mater., Volume 23 (2011), p. 5377

[75] W. Wu; Y. Horibe; N. Lee; S.-W. Cheong; J.R. Guest Conduction of topologically protected charged ferroelectric domain walls, Phys. Rev. Lett., Volume 108 (2012), p. 077203

[76] D. Meier; A. Cano; K. Delaney; Y. Kumagai; M. Mostovoy; N.A. Spaldin; R. Ramesh; M. Fiebig Anisotropic conductance at improper ferroelectric domain walls, Nat. Mater., Volume 11 (2012), p. 284

[77] P. Paruch; T. Tybell; J.-M. Triscone Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films, Appl. Phys. Lett., Volume 79 (2001), p. 530

[78] K. Terabe; M. Nakamura; S. Takekawa; K. Kitamura; S. Higuchi; Y. Gotoh; Y. Cho Microscale to nanoscale ferroelectric domain and surface engineering of a near stoichiometric LiNbO3 film, Appl. Phys. Lett., Volume 82 (2003), p. 433

[79] Y. Cho; K. Fujimoto; Y. Hiranaga; Y. Wagatsuma; A. Onoe; K. Terabe; K. Kitamura Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy, Appl. Phys. Lett., Volume 81 (2002), p. 4401

[80] P. Paruch; T. Tybell; J.-M. Triscone Nanoscale control and domain wall dynamics in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Proc. 10th Int. Ceram. Cong. CIMTEC 2002 D, 2002, p. 675

[81] N. Tayebi; Y. Narui; R.J. Chen; C.P. Collier; K.P. Giapis; Y. Zhang Nanopencil as a wear-tolerant probe for ultrahigh density data storage, Appl. Phys. Lett., Volume 93 (2008), p. 103112

[82] N. Tayebi; Y. Narui; N. Franklin; C.P. Collier; K.P. Giapis; Y. Nishi; Y. Zhang Fully inverted single-digit nanometer domains in ferroelectric films, Appl. Phys. Lett., Volume 96 (2010), p. 023103

[83] C. Blaser; P. Paruch Minimum domain size and stability in carbon nanotube-ferroelectric devices, Appl. Phys. Lett., Volume 101 (2012), p. 142906

[84] T. Maruyama; M. Saitoh; I. Sakai; T. Hidaka; Y. Yano; T. Noguchi Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate, Appl. Phys. Lett., Volume 73 (1998), p. 3524

[85] T. Tybell; P. Paruch; T. Giamarchi; J.-M. Triscone Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 89 (2002), p. 097601

[86] S.V. Kalinin; D.A. Bonnell Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B, Volume 65 (2002), p. 125408

[87] M. Molotskii Generation of ferroelectric domains in atomic force microscope, J. Appl. Phys., Volume 93 (2003), p. 6234

[88] B.L. Weeks; M.W. Vaughn; J.J. DeYoreo Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, Volume 21 (2005), p. 8096

[89] B.J. Rodriguez; S. Jesse; A.P. Baddorf; S.V. Kalinin High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy, Phys. Rev. Lett., Volume 96 (2006), p. 237602

[90] D. Dahan; M. Molotskii; G. Rosenman; Y. Rosenwaks Ferroelectric domain inversion: the role of humidity, Appl. Phys. Lett., Volume 89 (2006), p. 152902

[91] P. Maksymovych; S. Jesse; M. Hujiben; R. Ramehs; A. Morozovska; S. Choudhury; L.-Q. Chen; A.P. Baddorf; S.V. Kalinin Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces, Phys. Rev. Lett., Volume 102 (2009), p. 017601

[92] B.J. Rodriguez; S. Jesse; A.P. Baddorf; S.-H. Kim; S.V. Kalinin Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics, Phys. Rev. Lett., Volume 98 (2007), p. 247603

[93] V.Y. Shur; A.V. Ievlev; E.V. Nikolaeva; E.I. Shishkin; M.M. Neradovsky Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate, J. Appl. Phys., Volume 110 (2011), p. 052017

[94] S. Jesse; A.P. Baddorf; S.V. Kalinin Switching spectroscopy piezoresponse force microscopy of ferroelectric materials, Appl. Phys. Lett., Volume 88 (2006), p. 062908

[95] V. Likodimos; M. Labardi; M. Allegrini Kinetics of ferroelectric domains investigated by scanning force microscopy, Phys. Rev. B, Volume 61 (2000), p. 14440

[96] V. Likodimos; M. Labardi; X.K. Orlik; L. Pardi; M. Allegrini Thermally activated ferroelectric domain growth due to random defects, Phys. Rev. B, Volume 63 (2001), p. 064104

[97] S. Lemerle; J. Ferré; C. Chappert; V. Mathet; T. Giamarchi; P. Le Doussal Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett., Volume 80 (1998), p. 849

[98] P. Paruch; T. Giamarchi; J.-M. Triscone Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 94 (2005), p. 197601

[99] N.A. Pertsev; D.A. Kiselev; I.K. Bdikin; M. Kosec; A.L. Kholkin Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements, J. Appl. Phys., Volume 110 (2011), p. 052001

[100] B.J. Rodriguez; A.J. Nemanich; A. Kingon; A. Gruverman; S.V. Kalinin; K. Terabe; X.Y. Liu; K. Kitamura Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy, Appl. Phys. Lett., Volume 86 (2005), p. 012906

[101] R.C. Miller; A. Savage Further experiments on the sidewise motion of 180° domain walls in BaTiO3, Phys. Rev., Volume 115 (1959), p. 1460

[102] N.A. Pertsev; A. Petraru; H. Kohlstedt; R. Waser; I.K. Bdikin; D.A. Kiselev; A.L. Kholkin Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy, Nanotechnology, Volume 19 (2008), p. 375703

[103] V. Likodimos; M. Labardi; M. Allegrini Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy, Phys. Rev. B, Volume 66 (2002), p. 024104

[104] J.Y. Jo; D.K. Kim; Y.S. Kim; S.-B. Choe; T.K. Song; J.-G. Yoon; T.W. Noh Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films, Phys. Rev. Lett., Volume 97 (2006), p. 247602

[105] J.Y. Jo; H.S. Han; J.-G. Yoon; T.K. Song; S.-H. Kim; T.W. Noh Domain switching kinetics in disordered ferroelectric thin films, Phys. Rev. Lett., Volume 99 (2007), p. 267602

[106] J.Y. Jo; S.M. Yang; T.H. Kim; H.N. Lee; J.-G. Yoon; S. Park; Y. Jo; M.H. Jung; T.W. Noh Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett., Volume 102 (2009), p. 045701

[107] P. Paruch; A.B. Kolton; X. Hong; C.H. Ahn; T. Giamarchi Thermal quench effects on ferroelectric domain walls, Phys. Rev. B, Volume 85 (2012), p. 214115

[108] J. Guyonnet; E. Agoritsas; S. Bustingorry; T. Giamarchi; P. Paruch Multiscaling analysis of ferroelectric domain wall roughness, Phys. Rev. Lett., Volume 109 (2012), p. 147601

[109] J. Guyonnet; S. Bustingorry; C. Blaser; E.E. Ferrero; I. Gaponenko; J. Karthik; L.W. Martin; P. Paruch Assessment of environmental and disorder effects on ferroelectric domain dynamics, Phys. Rev. Lett. (2013) (submitted for publication)

[110] V.Y. Shur; E.V. Nikolaeva; E.I. Shishkin; V.L. Kozhevnikov; A.P. Chernykh; K. Terabe; K. Kitamura Polarization reversal in congruent and stoichiometric lithium tantalate, Appl. Phys. Lett., Volume 79 (2001), p. 3146

[111] G. Catalan; H. Béa; S. Fusil; M. Bibes; P. Paruch; A. Barthélémy; J.F. Scott Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3, Phys. Rev. Lett., Volume 100 (2008), p. 027602

[112] B. Ziegler; K. Martens; T. Giamarchi; P. Paruch Domain wall roughness in the stripe phase of BiFeO3 thin films, Phys. Rev. Lett. (2013) (submitted for publication)

[113] Z. Xiao; S. Poddar; S. Ducharme; X. Hong Domain wall roughness and creep in nanoscale crystalline ferroelectric polymer, Appl. Phys. Lett. (2013) (in press)

[114] V.V. Shvartsman; B. Dhkil; A.L. Kholkin Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy, Annu. Rev. Mater. Res., Volume 43 (2013)

[115] T.R. Volk; L.V. Simagina; R.V. Gainutdinov; A.L. Tolstikhina; L.I. Ivleva Ferroelectric micro domains and micro domain arrays recorder in strontium–barium niobate crystals in the field of atomic force microscope, J. Appl. Phys., Volume 108 (2010), p. 042010

[116] T.R. Volk; L.V. Simagina; R.V. Gainutdinov; E.S. Ivanova; L.I. Ivleva; S.V. Mitʼko Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals, Phys. Solid State, Volume 53 (2011), p. 2468

[117] B.J. Rodriguez; S. Jesse; A.A. Bokov; Z.-G. Ye; S.V. Kalinin Mapping bias-induced phase stability and random fields in relaxor ferroelectrics, Appl. Phys. Lett., Volume 95 (2009), p. 092904

[118] W.J. Metaxas; J.P. Jamet; A. Mougin; M. Cormier; J. Ferré; V. Baltz; B. Rodmacq; B. Dieny; R.L. Stamps Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett., Volume 99 (2007), p. 217208

[119] F. Cayssol; D. Ravelosona; C. Chappert; J. Ferré; J.P. Jamet Domain wall creep in magnetic wires, Phys. Rev. Lett., Volume 92 (2004), p. 107202

[120] L. Krusin-Elbaum; T. Shibauchi; B. Argyle; L. Gignac Stable ultrahigh-density magneto-optical recordings using introduced linear defects, Nature, Volume 410 (2001), p. 444

[121] T. Shibauchi; L. Krusin-Elbaum; V.M. Vinokur; B. Argyle; D. Weller; B.D. Terris Deroughening of a 1D domain wall in an ultrathin magnetic film by a correlated defect, Phys. Rev. Lett., Volume 87 (2001), p. 267201

[122] E. Bouchaud Scaling properties of cracks, J. Phys. Condens. Matter, Volume 9 (1997), p. 4319

[123] J.M. Boffa; C. Allain; J.P. Hulin Experimental analysis of fracture rugosity in granular and compact rocks, Eur. Phys. J. Appl. Phys., Volume 2 (1997), p. 281

[124] L. Ponson; D. Bonamy; E. Bouchaud Two-dimensional scaling properties of experimental fracture surfaces, Phys. Rev. Lett., Volume 96 (2006), p. 035506

[125] D. Bonamy; L. Ponson; S. Prades; E. Bouchaud; C. Guillot Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics, Phys. Rev. Lett., Volume 97 (2006), p. 135504

[126] M.J. Alava; P.K.V.V. Nukala; S. Zapperi Morphology of two-dimensional fracture surfaces, J. Stat. Mech. Theory Exp. (2006), p. L10002

[127] E. Bouchbinder; I. Procaccia; S. Santucci; L. Vanel Fracture surfaces as multiscaling graphs, Phys. Rev. Lett., Volume 96 (2006), p. 055509

[128] S. Santucci; K.J. Mäløy; A. Delaplace; J. Mathiesen; A. Hansen; J.O.H. Bakke; J. Schmittbuhl; L. Vanel; R. Purusattam Statistics of fracture surfaces, Phys. Rev. E, Volume 75 (2007), p. 016104

[129] S. Moulinet; C. Guthmann; E. Rolley Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, Eur. Phys. J. E, Volume 8 (2002), p. 437

[130] S. Moulinet; A. Rosso; W. Krauth; E. Rolley Width distribution of contact lines on a disordered substrate, Phys. Rev. E, Volume 69 (2004), p. 35103

[131] A. Prevost; E. Rolley; C. Guthmann Thermally activated motion of the contact line of a liquid 4He meniscus on a cesium substrate, Phys. Rev. Lett., Volume 83 (1999), p. 348

[132] A. Prevost; E. Rolley; C. Guthmann Dynamics of a helium-4 meniscus on a strongly disordered cesium substrate, Phys. Rev. B, Volume 65 (2002), p. 04517

[133] D.T. Fuchs; E. Zeldov; T. Tamegai; S. Ooi; M. Rappaport; H. Shtrikman Possible new vortex matter phases in Bi2Sr2CaCu2O8, Phys. Rev. Lett., Volume 80 (1998), p. 4971

[134] C.J. van der Beek; S. Colson; M. Konczykowski; M.V. Indenbom; R.J. Drost; P.H. Kes Magnetic relaxation in the “Bragg-glass” phase in BSCCO, Physica C, Volume 341–348 (2000), p. 1279

[135] V.K. Horváth; F. Family; T. Vicsek Anomalous noise distribution of the interface in two-phase fluid flow, Phys. Rev. Lett., Volume 67 (1991), p. 3207

[136] D. Geromichalos; F. Mugele; S. Hrminghaus Nonlocal dynamics of spontaneous imbibition fronts, Phys. Rev. Lett., Volume 89 (2002), p. 104503

[137] S.V. Kalinin; S. Jesse; B.J. Rodriguez; Y.H. Chu; R. Ramesh; E.A. Eliseev; A.N. Morozovska Probing the role of single defects on the thermodynamics of electric-field induced phase transitions, Phys. Rev. Lett., Volume 100 (2008), p. 155703

[138] P. Gao; C.T. Nelson; J.R. Jokisaari; S.-H. Baek; C.W. Bark; Y. Zhang; E. Wang; D.G. Schlom; C.-B. Eom; X. Pan Revealing the role of defects in ferroelectric switching with atomic resolution, Nat. Commun., Volume 2 (2011), p. 591

[139] K. Szot; W. Speier; G. Bihlmayer; R. Waser Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat. Mater., Volume 5 (2006), p. 312

[140] R. Wang; Y. Zhu; S.M. Shapiro Structural defects and the origin of the second length scale in SrTiO3, Phys. Rev. Lett., Volume 80 (1998), p. 2370

[141] R.J. Kamaladasa; W. Jiang; Y.N. Picard Imaging dislocations in single-crystal SrTiO3 substrates by electron channeling, J. Electron. Mater., Volume 40 (2011), p. 2222

[142] J. Seidel; P.M.Y. Batra; A. Katan; S.-Y. Yang; Q. He; A.P. Baddorf; S.V. Kalinin; C.-H. Yang; J.-C. Yang; Y.-H. Chu; E.K.H. Salje; H. Wromeester; M. Salmeron; R. Ramesh Domain wall conductivity in La-doped BiFeO3, Phys. Rev. Lett., Volume 105 (2010), p. 197603

[143] S. Farokhipoor; B. Noheda Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films, J. Appl. Phys., Volume 112 (2012), p. 052003

[144] C.-L. Jia; A. Thust; K.W. Urban Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core, Phys. Rev. Lett., Volume 95 (2005), p. 225506

[145] P. Paruch; A.-B. Posadas; M. Dawber; C.H. Ahn; P.L. McEuen Polarization switching using single-walled carbon nanotubes grown on epitaxial ferroelectric thin films, Appl. Phys. Lett., Volume 93 (2008), p. 132901

[146] C. Blaser; V. Esposito; P. Paruch Understanding polarization vs. charge dynamics effects in ferroelectric-carbon nanotube devices, Appl. Phys. Lett., Volume 102 (2013), p. 223503

[147] S.V. Kalinin; S. Jesse; A. Tselev; A.P. Baddorf; N. Balke The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films, ACS Nano, Volume 5 (2011), p. 5683

[148] G.L. Yuan; L.W. Martin; R. Ramesh; A. Uedono The dependence of oxygen vacancy distributions in BiFeO3 films on oxygen pressure and substrate, Appl. Phys. Lett., Volume 95 (2009), p. 012904

[149] P. Paruch; T. Giamarchi; J.-M. Triscone Domain wall creep in mixed ca axis Pb(Zr0.2Ti0.8)O3 thin films, Ann. Phys., Volume 13 (2004), p. 95

[150] M. Fiebig; T. Lottermoser; D. Frölich; A.V. Goltsev; R.V. Pisarev Observation of coupled magnetic and electric domains, Nature, Volume 419 (2002), p. 818

[151] C. Ederer; N.A. Spaldin Magnetoelectrics – a new route to magnetic ferroelectrics, Nat. Mater., Volume 3 (2004), p. 849

[152] Y. Chu; L.W. Martin; M.B. Holcomb; M. Gajek; S.-J. Han; Q. He; N. Balke; C.-H. Yang; D. Lee; W. Hu; Q. Zhan; P.-L. Yang; A. Fraile-Rodriguez; A. Scholl; S. Wang; R. Ramesh Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater., Volume 7 (2010), p. 478

[153] B. Houchmandzadeh; J. Lajzerowicz; E. Salje Order parameter coupling and chirality of domain walls, J. Phys. Condens. Matter, Volume 3 (1991), p. 5163

[154] M. Daraktchiev; G. Catalan; J.F. Scott Landau theory of domain wall magnetoelectricity, Phys. Rev. B, Volume 81 (2010), p. 224118

[155] L.W. Martin; Y.-H. Chu; M. Holcomb; M. Hujiben; P. Yu; S.-J. Han; D. Lee; S.X. Wang; R. Ramesh Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett., Volume 8 (2008), p. 2050

[156] G. Catalan; J.F. Scott Physics and applications of bismuth ferrite, Adv. Mater., Volume 21 (2009), p. 2463

[157] P. Aguado-Puente; J. Junquera Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations, Phys. Rev. Lett., Volume 100 (2008), p. 177601

[158] T.H. Kim; S.H. Baek; S.Y. Jang; S.M. Yang; S.H. Chang; T.K. Song; J.-G. Yoon; C.B. Eom; J.-S. Chung; T.W. Noh Step bunching-induced vertical lattice mismatch and crystallographic tilt in vicinal BiFeO3(001) films, Appl. Phys. Lett., Volume 98 (2011), p. 022904

[159] T.H. Kim; S.H. Baek; S.M. Yang; S.Y. Jang; D. Ortiz; T.K. Song; J.-S. Chung; C.B. Eom; T.W. Noh; J.-G. Yoon Electric-field-controlled directional motion of ferroelectric domain walls in multiferroic BiFeO3 films, Appl. Phys. Lett., Volume 95 (2009), p. 262902

[160] J.P. Bouchaud; L.F. Cugliandolo; J. Kurchan; M. Mezard Out of Equilibrium Dynamics in Spin-Glasses and Other Glassy Systems, World Scientific, Singapore, 1998

[161] L.F. Cugliandolo; T. Giamarchi; P. Le Doussal Dynamic compressibility and aging in Wigner crystals and quantum glasses, Phys. Rev. Lett., Volume 96 (2006), p. 217203

[162] G. Schehr; P.L. Doussal Functional renormalization for pinned elastic systems away from their steady states, Europhys. Lett., Volume 71 (2005), p. 290

[163] A.B. Kolton; A. Rosso; T. Giamarchi Relaxation of a flat interface, Phys. Rev. Lett., Volume 95 (2005), p. 180604

[164] S. Bustingorry; L.F. Cugliandolo; D. Dominguez Langevin simulations of the out-of-equilibrium dynamics of the vortex glass in high-temperature superconductors, Phys. Rev. B, Volume 75 (2007), p. 024506

[165] J.L. Iguain; S. Bustingorry; A.B. Kolton; L.F. Cugliandolo Growing correlations and aging of an elastic line in a random potential, Phys. Rev. B, Volume 80 (2009), p. 094201

[166] A.B. Kolton; A. Rosso; E.V. Albano; T. Giamarchi Short-time relaxation of a driven elastic string in a random medium, Phys. Rev. B, Volume 74 (2006), p. 140201

[167] A.B. Kolton; G. Schehr; P. Le Doussal Universal nonstationary dynamics at the depinning transition, Phys. Rev. Lett., Volume 103 (2009), p. 160602

[168] P. Chauve; T. Giamarchi; P. Le Doussal Creep and depinning in disordered media, Phys. Rev. B, Volume 62 (2000), p. 6241

[169] A. Rosso; A.K. Hartmann; W. Krauth Depinning of elastic manifolds, Phys. Rev. Lett., Volume 67 (2003), p. 021602

[170] J.M. López; J. Schmittbuhl Anomalous scaling of fracture surfaces, Phys. Rev. E, Volume 57 (1998), p. 6405

[171] J.J. Ramasco; J.M. López; M.A. Rodriguez Generic dynamic scaling in kinetic roughening, Phys. Rev. Lett., Volume 84 (2000), p. 2199

[172] S. Bustingorry; A.B. Kolton; T. Giamarchi Thermal rounding of the depinning transition in ultra thin Pt/Co/Pt films, Phys. Rev. B, Volume 85 (2012), p. 214416

[173] V.V. Randoshkin Magnetic-field dependence of the domain wall velocity in uniaxial films of iron garnets with various dampings, Sov. Phys., Solid State, Volume 37 (1995), p. 355

[174] V.Y. Shur; A. Gruverman; N.Y. Ponomarev; E.L. Rumyantsev; N.A. Tonkacheva Domain structure kinetics in ultrafast polarisation switching in lead germanate, JETP Lett., Volume 53 (1991), p. 615

[175] M. Dawber; A. Gruverman; J.F. Scott Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets, J. Phys. Condens. Matter, Volume 18 (2006), p. L71

Cité par Sources :

Commentaires - Politique