[Études nanoscopiques de parois de domaines ferroélectriques comme interfaces élastiques piégées]
La compétition entre lʼélasticité dʼune interface et le piégeage par un potentiel désordonné confère à cette dernière une configuration rugueuse auto-affine caractéristique ainsi quʼune réponse dynamique complexe aux forces externes. Cette approche de physique statistique fournit une description théorique générale du comportement de systèmes aussi divers que la propagation de fractures, les lignes de mouillage, les fronts de combustion et les phénomènes de croissance de surface. Dans les matériaux ferroélectriques, les parois de domaines, qui séparent les régions où la polarisation est orientée différemment, forment un autre exemple dʼinterfaces élastiques piégées, et constituent à ce titre un système modèle particulièrement utile. Réciproquement, une meilleure compréhension de ces propriétés physiques fondamentales permet de déterminer les paramètres-clés contrôlant la nucléation, la croissance et la stabilité des domaines et, de ce fait, lʼamélioration des performances des matériaux ferroélectriques pour des applications telles que mémoires, senseurs et actionneurs. Dans cette revue, nous nous focalisons sur des mesures de parois de domaines ferroélectriques individuelles par microscopie à force atomique en mode piézoréponse, qui permettent de déterminer leur configuration statique et leur réponse dynamique avec une résolution nanométrique sur plusieurs ordres de grandeur de longueur et de vitesse. Combiné au contrôle précis du champ électrique appliqué, de la température, de la contrainte, et de la nature et densité des défauts présents dans lʼéchantillon, ce système expérimental permet non seulement une démonstration directe des phénomènes de reptation et de rugosité, mais également dʼappréhender certains aspects moins connus de phénomènes hors équilibre ainsi que les effets dúne structure plus complexe, tant au niveau de lʼinterface elle-même que du potentiel désordonné de piégeage.
The competition between elasticity and pinning of an interface in a fluctuating potential energy landscape gives rise to characteristic self-affine roughening and a complex dynamic response to applied forces. This statistical physics approach provides a general framework in which the behaviour of systems as diverse as propagating fractures, wetting lines, burning fronts or surface growth can be described. Domain walls separating regions with different polarisation orientation in ferroelectric materials are another example of pinned elastic interfaces, and can serve as a particularly useful model system. Reciprocally, a better understanding of this fundamental physics allows key parameters controlling domain switching, growth, and stability to be determined, and used to improve the performance of ferroelectric materials in applications such as memories, sensors, and actuators. In this review, we focus on piezoresponse force microscopy measurements of individual ferroelectric domain walls, allowing their static configuration and dynamic response to be accessed with nanoscale resolution over multiple orders of length scale and velocity. Combined with precise control over the applied electric field, temperature, and strain, and the ability to influence the type and density of defects present in the sample, this experimental system has allowed not only a direct demonstration of creep motion and roughening, but provides an opportunity to test less-well-understood aspects of out-of-equilibrium behaviour, and the effects of greater complexity in the structure of both the interface and the disorder landscape pinning it.
Mot clés : Parois de domaines, Microscopie à force atomique en mode piézoréponse, Reptation, Rugosité, Désordre, Hors équilibre
Patrycja Paruch 1 ; Jill Guyonnet 1
@article{CRPHYS_2013__14_8_667_0, author = {Patrycja Paruch and Jill Guyonnet}, title = {Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces}, journal = {Comptes Rendus. Physique}, pages = {667--684}, publisher = {Elsevier}, volume = {14}, number = {8}, year = {2013}, doi = {10.1016/j.crhy.2013.08.004}, language = {en}, }
Patrycja Paruch; Jill Guyonnet. Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 667-684. doi : 10.1016/j.crhy.2013.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.004/
[1] Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977
[2] Domain structure of Rochelle salt and KH2PO4, Phys. Rev., Volume 90 (1953), p. 193
[3] A contribution to the theory of domain walls in ferroelectrics, Sov. Phys. JETP, Volume 35 (1959), p. 822
[4] Ab initio study of ferroelectric domain walls in PbTiO3, Phys. Rev. B, Volume 65 (2002), p. 104111
[5] Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3, Science, Volume 331 (2011), p. 1420
[6] Ferroelectric Memories, Springer, Berlin, 2000
[7] Pushing towards the digital storage limit, Nat. Mater., Volume 3 (2004), p. 81
[8] Ferroelectric Transducers and Sensors, Gordon and Breach, New York, 1982
[9] Ferroelectric sensors, IEEE Sens. J., Volume 1 (2001), p. 191
[10] High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Appl. Phys. Lett., Volume 85 (2004), p. 1757
[11] Photoferroelectrics, Springer-Verlag, Berlin, 1979
[12] Domain wall nanoelectronics, Rev. Mod. Phys., Volume 84 (2012), p. 119
[13] Multiferroic boundaries as active memory devices: trajectories towards domain boundary engineering, ChemPhysChem, Volume 11 (2010), p. 940
[14] Multiferroics: a way forward along domain walls, Nat. Mater., Volume 8 (2009), p. 168
[15] Thermodynamics and kinetics of switching effects in ferroelectrics, Phys. Rev. B, Volume 65 (2002), p. 174101
[16] Screening and size effects on the nanodomain tailoring in ferroelectrics semiconductors, Phys. Rev. B, Volume 73 (2006), p. 104440
[17] Screening and retardation effects on 180°-domain wall motion in ferroelectrics: wall velocity and no linear dynamics due to polarisation–screening charge interactions, Phys. Rev. B, Volume 78 (2008), p. 245509
[18] Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau–Ginzburg–Devonshire approach, Phys. Rev. B, Volume 80 (2009), p. 214110
[19] Local polarization switching in the presence of surface-charged defects: microscopic mechanisms and piezoresponse force spectroscopy observations, Phys. Rev. B, Volume 78 (2008), p. 054101
[20] Evidence for dielectric aging due to progressive 180° domain wall pinning in polydomain Pb(Zr0.45Ti0.55)O3 thin films, Phys. Rev. B, Volume 79 (2009), p. 054104
[21] Ab initio study of 180° domain wall energy and structure in PbTiO3, Appl. Phys. Lett., Volume 75 (1999), p. 2830
[22] First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3, Phys. Rev. B, Volume 68 (2003), p. 134103
[23] Mixed Bloch–Neel–Ising character of 180° ferroelectric domain walls, Phys. Rev. B, Volume 80 (2009), p. 060102
[24] Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films, J. Appl. Phys., Volume 100 (2006), p. 051608
[25] Dynamics of disordered elastic systems (M.C. Miguel; J.M. Rubi, eds.), Jamming, Yielding and Irreversible Deformation in Condensed Matter, Springer-Verlag, Berlin, 2006, p. 91 | arXiv
[26] Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films, Springer, Berlin/Heidelberg, 2007 | arXiv
[27] Fractal Concepts in Surface Growth, Cambridge University Press, New York, 1995
[28] Vortices in high-temperature superconductors, Rev. Mod. Phys., Volume 66 (1994), p. 1125
[29] Disordered elastic systems and one-dimensional interfaces, Physica B, Volume 407 (2012), p. 1725
[30] Finite-temperature and finite-time scaling of the directed polymer free-energy with respect to its geometrical fluctuations, Phys. Rev. E, Volume 86 (2012), p. 031144
[31] Interface phenomenology, dipolar interaction, and the dimensionality dependence of the incommensurate–commensurate transition, J. Phys. C, Volume 16 (1983), p. 4125
[32] Disorder driven roughening transitions of elastic manifolds and periodic elastic media, Eur. Phys. J. B, Volume 8 (1999), p. 525
[33] Theory of the dispersion of magnetic permeability in ferromagnetic bodies, Z. Phys. Sov., Volume 8 (1935), p. 153
[34] Theory of the structure of ferromagnetic domains in films and small particles, Phys. Rev., Volume 70 (1946), p. 965
[35] Vortex phases (Claude Berthier; Laurent P. Levy; Gerard Martinez, eds.), High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, Springer-Verlag, Berlin, 2002, p. 314 | arXiv
[36] Directed polymers in random media probability distributions, Phys. Rev. A, Volume 44 (1991), p. R3415
[37] Replica field theory for random manifolds, J. Phys. I, Volume 1 (1991), p. 809
[38] Geometry of Gaussian signals, J. Stat. Mech. Theory Exp. (2005), p. L08001
[39] Multifractality of growing surfaces, Phys. Rev. A, Volume 45 (1992), p. R6951
[40] Thermal rounding of the depinning transition, Europhys. Lett., Volume 81 (2008), p. 26005
[41] Mechanism for the sidewise motion of 180° domain walls in barium titanate, Phys. Rev., Volume 117 (1960), p. 1460
[42] Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev., Volume 95 (1954), p. 690
[43] Switching mechanism in triglycine sulfate and other ferroelectrics, Phys. Rev., Volume 116 (1959), p. 61
[44] Nucleation and growth mechanism of ferroelectric domain-wall motion, Nature, Volume 449 (2007), p. 881
[45] Note on ferroelectric domain switching, J. Phys. Soc. Jpn., Volume 31 (1971), p. 506
[46] Polarization Reversals in Ferroelectrics, Gordon and Breach, Amsterdam, 1996
[47] Fast Polarisation Reversal Process: Evolution of Ferroelectric Domain Structure in Thin Films, Gordon and Breach, Amsterdam, 1996
[48] A new disorder-driven roughening transition of charge-density waves and flux-line lattices, Phys. Rev. Lett., Volume 79 (1997), p. 5090
[49] Interface roughening in systems with quenched random impurities, Europhys. Lett., Volume 4 (1987), p. 1241
[50] Interface pinning and dynamics in random systems, Phys. Rev. B, Volume 42 (1990), p. 8577
[51] Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., Volume 61 (1998), p. 1267
[52] Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields, J. Appl. Phys., Volume 82 (1997), p. 1973
[53] Domain wall pinning contribution to the nonlinear dielectric permittivity in Pb(Zr,Ti)O3 thin films, Appl. Phys. Lett., Volume 73 (1998), p. 2045
[54] Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric–ferroelastic domain walls, Phys. Rev. B, Volume 55 (1997), p. R649
[55] Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics, J. Appl. Phys., Volume 82 (1997), p. 1788
[56] Dynamic light scattering at domains and nano clusters in a relaxor ferroelectric, Phys. Rev. Lett., Volume 86 (2001), p. 220101
[57] Non-Debye domain wall response in KH2PO4, Phys. Rev. B, Volume 65 (2002), p. 134102
[58] Dynamics of nanoscale polar regions and critical behavior of the uniaxial relaxor Sr0.61Ba0.39Nb2O6:Co, Phys. Rev. B, Volume 72 (2005), p. 024106
[59] Non-Debye domain-wall-induced dielectric response in Sr0.61 − xCexBa0.39Nb2O6, Phys. Rev. B, Volume 65 (2002), p. 220101
[60] Crossover from pure to random-field critical susceptibility in KH2AsxP1 − xO4, Phys. Rev. B, Volume 72 (2005), p. 052109
[61] Universal domain wall dynamics in disordered ferroic materials, Annu. Rev. Mater. Res., Volume 37 (2007), p. 415
[62] Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4, Phys. Rev. Lett., Volume 94 (2005), p. 117601
[63] Direct observation of pinning and bowing of a single ferroelectric domain wall, Phys. Rev. Lett., Volume 82 (1999), p. 4106
[64] Vector piezoresponse force microscopy, Microsc. Microanal., Volume 12 (2006), p. 206
[65] Local polarization dynamics in ferroelectric materials, Rep. Prog. Phys., Volume 73 (2010), p. 056502
[66] Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics, J. Mater. Sci., Volume 41 (2006), p. 107
[67] Atomic force microscopy studies of ferroelectric domain in epitaxial PbZr0.2Ti0.8O3 thin films and the static and dynamic behaviour of ferroelectric domain walls, 2004 (PhD thesis)
[68] Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials, Nat. Mater., Volume 7 (2008), p. 209
[69] Shear effects in lateral piezoresponse force microscopy at 180° ferroelectric domain walls, Appl. Phys. Lett., Volume 95 (2009), p. 132902
[70] Lateral piezoresponse across ferroelectric domain walls in thin films, J. Appl. Phys., Volume 108 (2010), p. 042002
[71] Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall, Phys. Rev. B, Volume 86 (2012), p. 134115
[72] Conduction at domain walls in oxide multiferroics, Nat. Mater., Volume 8 (2009), p. 229
[73] Conduction through 71° domain walls in BiFeO3 thin films, Phys. Rev. Lett., Volume 107 (2011), p. 127601
[74] Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films, Adv. Mater., Volume 23 (2011), p. 5377
[75] Conduction of topologically protected charged ferroelectric domain walls, Phys. Rev. Lett., Volume 108 (2012), p. 077203
[76] Anisotropic conductance at improper ferroelectric domain walls, Nat. Mater., Volume 11 (2012), p. 284
[77] Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films, Appl. Phys. Lett., Volume 79 (2001), p. 530
[78] Microscale to nanoscale ferroelectric domain and surface engineering of a near stoichiometric LiNbO3 film, Appl. Phys. Lett., Volume 82 (2003), p. 433
[79] Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy, Appl. Phys. Lett., Volume 81 (2002), p. 4401
[80] Nanoscale control and domain wall dynamics in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Proc. 10th Int. Ceram. Cong. CIMTEC 2002 D, 2002, p. 675
[81] Nanopencil as a wear-tolerant probe for ultrahigh density data storage, Appl. Phys. Lett., Volume 93 (2008), p. 103112
[82] Fully inverted single-digit nanometer domains in ferroelectric films, Appl. Phys. Lett., Volume 96 (2010), p. 023103
[83] Minimum domain size and stability in carbon nanotube-ferroelectric devices, Appl. Phys. Lett., Volume 101 (2012), p. 142906
[84] Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate, Appl. Phys. Lett., Volume 73 (1998), p. 3524
[85] Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 89 (2002), p. 097601
[86] Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B, Volume 65 (2002), p. 125408
[87] Generation of ferroelectric domains in atomic force microscope, J. Appl. Phys., Volume 93 (2003), p. 6234
[88] Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, Volume 21 (2005), p. 8096
[89] High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy, Phys. Rev. Lett., Volume 96 (2006), p. 237602
[90] Ferroelectric domain inversion: the role of humidity, Appl. Phys. Lett., Volume 89 (2006), p. 152902
[91] Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces, Phys. Rev. Lett., Volume 102 (2009), p. 017601
[92] Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics, Phys. Rev. Lett., Volume 98 (2007), p. 247603
[93] Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate, J. Appl. Phys., Volume 110 (2011), p. 052017
[94] Switching spectroscopy piezoresponse force microscopy of ferroelectric materials, Appl. Phys. Lett., Volume 88 (2006), p. 062908
[95] Kinetics of ferroelectric domains investigated by scanning force microscopy, Phys. Rev. B, Volume 61 (2000), p. 14440
[96] Thermally activated ferroelectric domain growth due to random defects, Phys. Rev. B, Volume 63 (2001), p. 064104
[97] Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett., Volume 80 (1998), p. 849
[98] Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 94 (2005), p. 197601
[99] Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements, J. Appl. Phys., Volume 110 (2011), p. 052001
[100] Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy, Appl. Phys. Lett., Volume 86 (2005), p. 012906
[101] Further experiments on the sidewise motion of 180° domain walls in BaTiO3, Phys. Rev., Volume 115 (1959), p. 1460
[102] Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy, Nanotechnology, Volume 19 (2008), p. 375703
[103] Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy, Phys. Rev. B, Volume 66 (2002), p. 024104
[104] Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films, Phys. Rev. Lett., Volume 97 (2006), p. 247602
[105] Domain switching kinetics in disordered ferroelectric thin films, Phys. Rev. Lett., Volume 99 (2007), p. 267602
[106] Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett., Volume 102 (2009), p. 045701
[107] Thermal quench effects on ferroelectric domain walls, Phys. Rev. B, Volume 85 (2012), p. 214115
[108] Multiscaling analysis of ferroelectric domain wall roughness, Phys. Rev. Lett., Volume 109 (2012), p. 147601
[109] Assessment of environmental and disorder effects on ferroelectric domain dynamics, Phys. Rev. Lett. (2013) (submitted for publication)
[110] Polarization reversal in congruent and stoichiometric lithium tantalate, Appl. Phys. Lett., Volume 79 (2001), p. 3146
[111] Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3, Phys. Rev. Lett., Volume 100 (2008), p. 027602
[112] Domain wall roughness in the stripe phase of BiFeO3 thin films, Phys. Rev. Lett. (2013) (submitted for publication)
[113] Domain wall roughness and creep in nanoscale crystalline ferroelectric polymer, Appl. Phys. Lett. (2013) (in press)
[114] Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy, Annu. Rev. Mater. Res., Volume 43 (2013)
[115] Ferroelectric micro domains and micro domain arrays recorder in strontium–barium niobate crystals in the field of atomic force microscope, J. Appl. Phys., Volume 108 (2010), p. 042010
[116] Scanning probe microscopy investigation of ferroelectric properties of barium strontium niobate crystals, Phys. Solid State, Volume 53 (2011), p. 2468
[117] Mapping bias-induced phase stability and random fields in relaxor ferroelectrics, Appl. Phys. Lett., Volume 95 (2009), p. 092904
[118] Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett., Volume 99 (2007), p. 217208
[119] Domain wall creep in magnetic wires, Phys. Rev. Lett., Volume 92 (2004), p. 107202
[120] Stable ultrahigh-density magneto-optical recordings using introduced linear defects, Nature, Volume 410 (2001), p. 444
[121] Deroughening of a 1D domain wall in an ultrathin magnetic film by a correlated defect, Phys. Rev. Lett., Volume 87 (2001), p. 267201
[122] Scaling properties of cracks, J. Phys. Condens. Matter, Volume 9 (1997), p. 4319
[123] Experimental analysis of fracture rugosity in granular and compact rocks, Eur. Phys. J. Appl. Phys., Volume 2 (1997), p. 281
[124] Two-dimensional scaling properties of experimental fracture surfaces, Phys. Rev. Lett., Volume 96 (2006), p. 035506
[125] Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics, Phys. Rev. Lett., Volume 97 (2006), p. 135504
[126] Morphology of two-dimensional fracture surfaces, J. Stat. Mech. Theory Exp. (2006), p. L10002
[127] Fracture surfaces as multiscaling graphs, Phys. Rev. Lett., Volume 96 (2006), p. 055509
[128] Statistics of fracture surfaces, Phys. Rev. E, Volume 75 (2007), p. 016104
[129] Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, Eur. Phys. J. E, Volume 8 (2002), p. 437
[130] Width distribution of contact lines on a disordered substrate, Phys. Rev. E, Volume 69 (2004), p. 35103
[131] Thermally activated motion of the contact line of a liquid 4He meniscus on a cesium substrate, Phys. Rev. Lett., Volume 83 (1999), p. 348
[132] Dynamics of a helium-4 meniscus on a strongly disordered cesium substrate, Phys. Rev. B, Volume 65 (2002), p. 04517
[133] Possible new vortex matter phases in Bi2Sr2CaCu2O8, Phys. Rev. Lett., Volume 80 (1998), p. 4971
[134] Magnetic relaxation in the “Bragg-glass” phase in BSCCO, Physica C, Volume 341–348 (2000), p. 1279
[135] Anomalous noise distribution of the interface in two-phase fluid flow, Phys. Rev. Lett., Volume 67 (1991), p. 3207
[136] Nonlocal dynamics of spontaneous imbibition fronts, Phys. Rev. Lett., Volume 89 (2002), p. 104503
[137] Probing the role of single defects on the thermodynamics of electric-field induced phase transitions, Phys. Rev. Lett., Volume 100 (2008), p. 155703
[138] Revealing the role of defects in ferroelectric switching with atomic resolution, Nat. Commun., Volume 2 (2011), p. 591
[139] Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat. Mater., Volume 5 (2006), p. 312
[140] Structural defects and the origin of the second length scale in SrTiO3, Phys. Rev. Lett., Volume 80 (1998), p. 2370
[141] Imaging dislocations in single-crystal SrTiO3 substrates by electron channeling, J. Electron. Mater., Volume 40 (2011), p. 2222
[142] Domain wall conductivity in La-doped BiFeO3, Phys. Rev. Lett., Volume 105 (2010), p. 197603
[143] Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films, J. Appl. Phys., Volume 112 (2012), p. 052003
[144] Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core, Phys. Rev. Lett., Volume 95 (2005), p. 225506
[145] Polarization switching using single-walled carbon nanotubes grown on epitaxial ferroelectric thin films, Appl. Phys. Lett., Volume 93 (2008), p. 132901
[146] Understanding polarization vs. charge dynamics effects in ferroelectric-carbon nanotube devices, Appl. Phys. Lett., Volume 102 (2013), p. 223503
[147] The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films, ACS Nano, Volume 5 (2011), p. 5683
[148] The dependence of oxygen vacancy distributions in BiFeO3 films on oxygen pressure and substrate, Appl. Phys. Lett., Volume 95 (2009), p. 012904
[149] Domain wall creep in mixed c–a axis Pb(Zr0.2Ti0.8)O3 thin films, Ann. Phys., Volume 13 (2004), p. 95
[150] Observation of coupled magnetic and electric domains, Nature, Volume 419 (2002), p. 818
[151] Magnetoelectrics – a new route to magnetic ferroelectrics, Nat. Mater., Volume 3 (2004), p. 849
[152] Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater., Volume 7 (2010), p. 478
[153] Order parameter coupling and chirality of domain walls, J. Phys. Condens. Matter, Volume 3 (1991), p. 5163
[154] Landau theory of domain wall magnetoelectricity, Phys. Rev. B, Volume 81 (2010), p. 224118
[155] Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett., Volume 8 (2008), p. 2050
[156] Physics and applications of bismuth ferrite, Adv. Mater., Volume 21 (2009), p. 2463
[157] Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations, Phys. Rev. Lett., Volume 100 (2008), p. 177601
[158] Step bunching-induced vertical lattice mismatch and crystallographic tilt in vicinal BiFeO3(001) films, Appl. Phys. Lett., Volume 98 (2011), p. 022904
[159] Electric-field-controlled directional motion of ferroelectric domain walls in multiferroic BiFeO3 films, Appl. Phys. Lett., Volume 95 (2009), p. 262902
[160] Out of Equilibrium Dynamics in Spin-Glasses and Other Glassy Systems, World Scientific, Singapore, 1998
[161] Dynamic compressibility and aging in Wigner crystals and quantum glasses, Phys. Rev. Lett., Volume 96 (2006), p. 217203
[162] Functional renormalization for pinned elastic systems away from their steady states, Europhys. Lett., Volume 71 (2005), p. 290
[163] Relaxation of a flat interface, Phys. Rev. Lett., Volume 95 (2005), p. 180604
[164] Langevin simulations of the out-of-equilibrium dynamics of the vortex glass in high-temperature superconductors, Phys. Rev. B, Volume 75 (2007), p. 024506
[165] Growing correlations and aging of an elastic line in a random potential, Phys. Rev. B, Volume 80 (2009), p. 094201
[166] Short-time relaxation of a driven elastic string in a random medium, Phys. Rev. B, Volume 74 (2006), p. 140201
[167] Universal nonstationary dynamics at the depinning transition, Phys. Rev. Lett., Volume 103 (2009), p. 160602
[168] Creep and depinning in disordered media, Phys. Rev. B, Volume 62 (2000), p. 6241
[169] Depinning of elastic manifolds, Phys. Rev. Lett., Volume 67 (2003), p. 021602
[170] Anomalous scaling of fracture surfaces, Phys. Rev. E, Volume 57 (1998), p. 6405
[171] Generic dynamic scaling in kinetic roughening, Phys. Rev. Lett., Volume 84 (2000), p. 2199
[172] Thermal rounding of the depinning transition in ultra thin Pt/Co/Pt films, Phys. Rev. B, Volume 85 (2012), p. 214416
[173] Magnetic-field dependence of the domain wall velocity in uniaxial films of iron garnets with various dampings, Sov. Phys., Solid State, Volume 37 (1995), p. 355
[174] Domain structure kinetics in ultrafast polarisation switching in lead germanate, JETP Lett., Volume 53 (1991), p. 615
[175] Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets, J. Phys. Condens. Matter, Volume 18 (2006), p. L71
Cité par Sources :
Commentaires - Politique