Comptes Rendus
Artificial multiferroic heterostructures for an electric control of magnetic properties
[Hétérostructures multiferroïques artificielles pour un contrôle électrique des propriétés magnétiques]
Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 168-181.

Contrôler électriquement les propriétés magnétiques des matériaux et réaliser ainsi de nouveaux composants faiblement consommateurs en énergie est un des enjeux de la future électronique de spin. Ceci explique l'intérêt considérable porté aux matériaux et architectures multiferroïques. Malgré des recherches intenses, le graal d'un composé à la fois ferroélectrique et ferro- ou ferrimagnétique à température ambiante avec un fort couplage magnétoélectrique entre ces deux propriétés n'a pas encore été trouvé. Pour pallier ce manque, de nombreux travaux ont porté sur les multiferroïques artificiels, hétérostructures combinant un matériau ferroélectrique ou piézoélectrique et un composé ferromagnétique. Cet article constitue une revue succincte du potentiel de ces hétérostructures en géométrie planaire pour obtenir un contrôle électrique des propriétés magnétiques. Un tel contrôle peut être obtenu par un effet magnétoélectrique indirect basé sur un couplage d'origine élastique, de façon directe par une modulation des charges dans le ferromagnétique induite par la ferroélectricité ou encore en exploitant le couplage d'échange à l'interface entre un multiferroïque et un matériau magnétique.

The control of magnetism by electric fields is an important goal for future low-power spintronics devices. This partly explains the intensified recent interest for magnetoelectric multiferroic materials and heterostructures. The lack of ferro- or ferrimagnetic–ferroelectric materials with large magnetoelectric coupling between the two orders has spurred intensive research on artificial multiferroics combining ferroelectric or piezoelectric materials and ferromagnets. In this paper we review synthetically the potential of thin-film-based heterostructures in which a magnetic film is in contact with a ferroelectric or piezoelectric one to obtain an electric control of magnetic properties. This electric control either results from a strain-induced magnetoelectric coupling, a charge-driven one, or from the modulation of an interfacial exchange-bias interaction.

Publié le :
DOI : 10.1016/j.crhy.2015.01.007
Keywords: Multiferroics, Heterostructures, Magnetoelectric coupling, Interfaces, Spintronics, Ferroelectrics
Mot clés : Multiferroïques, Hétérostructures, Couplage magnétoélectrique, Interfaces, Spintronique, Ferroélectriques
Vincent Garcia 1 ; Manuel Bibes 1 ; Agnès Barthélémy 1

1 Unité mixte de physique CNRS/Thales, campus de l'École polytechnique, 1, avenue Augustin-Fresnel, 91767 Palaiseau, France
@article{CRPHYS_2015__16_2_168_0,
     author = {Vincent Garcia and Manuel Bibes and Agn\`es Barth\'el\'emy},
     title = {Artificial multiferroic heterostructures for an electric control of magnetic properties},
     journal = {Comptes Rendus. Physique},
     pages = {168--181},
     publisher = {Elsevier},
     volume = {16},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crhy.2015.01.007},
     language = {en},
}
TY  - JOUR
AU  - Vincent Garcia
AU  - Manuel Bibes
AU  - Agnès Barthélémy
TI  - Artificial multiferroic heterostructures for an electric control of magnetic properties
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 168
EP  - 181
VL  - 16
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.01.007
LA  - en
ID  - CRPHYS_2015__16_2_168_0
ER  - 
%0 Journal Article
%A Vincent Garcia
%A Manuel Bibes
%A Agnès Barthélémy
%T Artificial multiferroic heterostructures for an electric control of magnetic properties
%J Comptes Rendus. Physique
%D 2015
%P 168-181
%V 16
%N 2
%I Elsevier
%R 10.1016/j.crhy.2015.01.007
%G en
%F CRPHYS_2015__16_2_168_0
Vincent Garcia; Manuel Bibes; Agnès Barthélémy. Artificial multiferroic heterostructures for an electric control of magnetic properties. Comptes Rendus. Physique, Volume 16 (2015) no. 2, pp. 168-181. doi : 10.1016/j.crhy.2015.01.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.007/

[1] H. Schmidt Multi-ferroic magnetoelectrics, Ferroelectrics, Volume 162 (1994), pp. 317-338

[2] M. Fiebig Revival of the magnetoelectric effect, J. Phys. D, Appl. Phys., Volume 38 (2005), p. R123-R152

[3] W. Eerenstein; N.D. Mathur; J.F. Scott Multiferroic and magnetoelectric materials, Nature, Volume 442 (2006), pp. 759-765

[4] N.A. Hill Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B, Volume 104 (2000), pp. 6694-6709

[5] C.W. Nan; M.I. Bichurin; S.X. Dong; D. Viehland; G. Srinivasan Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., Volume 103 (2008), p. 031101

[6] C.A.F. Vaz; J. Hoffman; C.H. Ahn; R. Ramesh Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater., Volume 22 (2010), pp. 2900-2918

[7] J. Ma; J.-M. Hu; Z. Li; C.-W. Nan Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater., Volume 23 (2011), pp. 1062-1087

[8] R.C. Kambale; D.Y. Jeong; J. Ryu Current status of magnetoelectric composite thin/thick films, Adv. Condens. Matter Phys., Volume 2012 (2012), p. 824643

[9] C.A.F. Vaz Electric field control of magnetism in multiferroic heterostructures, J. Phys. Condens. Matter, Volume 24 (2012), p. 333201

[10] S. Fusil; V. Garcia; A. Barthélémy; M. Bibes Magnetoelectric devices for spintronics, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 91-116

[11] Y. Wang; J.M. Hu; Y.H. Lin; C.-W. Nan Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater., Volume 2 (2010), pp. 61-68

[12] C.W. Nan Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Phys. Rev. B, Volume 50 (1994), pp. 6082-6088

[13] C. Thiele; K. Dorr; O. Bilani; J. Rödel; L. Schultz Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN–PT(001) (A = Sr, Ca), Phys. Rev. B, Volume 75 (2007), p. 054408

[14] G. Venkataiah; Y. Shirahata; M. Itoh; T. Taniyama Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field, Appl. Phys. Lett., Volume 99 (2011), p. 102506

[15] Y. Shirahata; T. Nozaki; G. Venkataiah; H. Taniguchi; M. Itoh; T. Taniyama Switching of the symmetry of magnetic anisotropy in Fe/BaTiO3 heterostructures, Appl. Phys. Lett., Volume 99 (2011), p. 022501

[16] N.A. Pertsev Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films, Phys. Rev. B, Volume 78 (2008), p. 212102

[17] J.-M. Hu; C.-W. Nan Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures, Phys. Rev. B, Volume 80 (2009), p. 224416

[18] M.K. Lee; T.K. Nath; C.B. Eom; M.C. Smoak; F. Tsui Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate, Appl. Phys. Lett., Volume 77 (2000), pp. 3547-3549

[19] W. Eerenstein; M. Wiora; J.L. Prieto; J.F. Scott; N.D. Mathur Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures, Nat. Mater., Volume 6 (2007), pp. 348-351

[20] C.A.F. Vaz; J. Hoffman; A.B. Posadas; C. Ahn Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures, Appl. Phys. Lett., Volume 94 (2009), p. 022504

[21] R.V. Chopdekar; Y. Suzuki Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3, Appl. Phys. Lett., Volume 89 (2006), p. 182506

[22] T.H.E. Lahtinen; S. van Dijken Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3, Appl. Phys. Lett., Volume 102 (2013), p. 112406

[23] R. Moubah; F. Magnus; A. Zamani; V. Kapaklis; P. Nordblad; B. Hjörvarsson Strain induced changes in magnetization of amorphous Co95Zr5 based multiferroic heterostructures, AIP Adv., Volume 3 (2013), p. 022113

[24] S. Polisetty; W. Echtenkamp; K. Jones; X. He; S. Sahoo; C. Binek Piezoelectric tuning of exchange bias in a heterostructure, Phys. Rev. B, Volume 82 (2010), p. 134419

[25] K. Dörr; C. Thiele Multiferroic bilayers of manganites and titanates, Phys. Stat. Sol. (b), Volume 243 (2006), pp. 21-28

[26] T. Nan; Z. Zhou; M. Liu; X. Yang; Y. Gao; B.A. Assaf; H. Lin; S. Velu; X. Wang; H. Luo; J. Chen; S. Akhtar; E. Hu; R. Rajiv; K. Krishnan; S. Sreedhar; D. Heiman; B.M. Howe; G.J. Brown; N.X. Sun Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN–PT interface, Sci. Rep., Volume 4 (2014), p. 03688

[27] S. Geprags; A. Brandlmaier; M. Opel et al. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures, Appl. Phys. Lett., Volume 96 (2010), p. 142509

[28] M. Weiler; A. Brandlmaier; S. Geprags; N. Althammer; M. Opel; C. Bihler; H. Huebl; M.S. Brandt; R. Gross; S.T. Goennenwein Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature, New J. Phys., Volume 11 (2009), p. 013021

[29] A. Brandlmaier; S. Geprägs; G. Woltersdorf; R. Gross; S.T.B. Goennenwein Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids, J. Appl. Phys., Volume 110 (2011), p. 043913

[30] Ming Liu; Jing Lou; Shandong Li; Nian X. Sun E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures, Adv. Funct. Mater., Volume 21 (2011), pp. 2593-2598

[31] T. Wu; A. Bur; P. Zhao; K.P. Mohanchandra; K. Wong; K.L. Wang; C.S. Lynch; G.P. Carman Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1x)[PbTiO3]x heterostructure, Appl. Phys. Lett., Volume 98 (2011), p. 012504

[32] J. Lou; M. Liu; D. Ree; N.X. Sun Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate-lead titanate (PZN–PT) heterostructures, Adv. Mater., Volume 21 (2009), pp. 4711-4715

[33] M. Liu; O. Obi; J. Lo; Y. Chen; Z. Cai; S. Stoute; M. Espanol; M. Lew; X. Situ; K.S. Ziemer; V.G. Harris; N.X. Sun Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures, Adv. Funct. Mater., Volume 19 (2009), pp. 1826-1831

[34] M. Liu; S. Li; Z. Zhou; S. Beguhn; J. Lou; F. Xu; T.J. Lu; N.X. Sun Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures, J. Appl. Phys., Volume 112 (2012), p. 063917

[35] T.K. Chung; G.P. Carman; K.P. Mohanchandra Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film, Appl. Phys. Lett., Volume 92 (2008), p. 112509

[36] T.H.E. Lahtinen; J.O. Tuomi; S. van Dijken Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures, Adv. Mater., Volume 23 (2011), pp. 3187-3191

[37] T.H.E. Lahtinen; K.J.A. Franke; S. van Dijken Electric-field control of magnetic domain wall motion and local magnetization reversal, Sci. Rep., Volume 2 (2012), p. 258

[38] R.V. Chopdekar; V.K. Malik; A. Fraile Rodríguez; L. Le Guyader; Y. Takamura; A. Scholl; D. Stender; C.W. Schneider; C. Bernhard; F. Nolting; L.J. Heyderman Spatially resolved strain-imprinted magnetic states in an artificial multiferroic, Phys. Rev. B, Volume 86 (2012), p. 014408

[39] B. Van de Wiele; L. Laurson; K.J.A. Franke; S. van Dijken Electric field driven magnetic domain wall motion in ferromagnetic–ferroelectric heterostructures, Appl. Phys. Lett., Volume 104 (2014), p. 012401

[40] S.S.P. Parkin; M. Hayashi; L. Thomas Magnetic domain-wall racetrack memory, Science, Volume 320 (2008), pp. 190-194

[41] D.A. Allwood; G. Xiong; C.C. Faulkner; D. Atkinson; D. Petit; R.P. Cowburn Magnetic domain-wall logic, Science, Volume 309 (2005), pp. 1688-1692

[42] R.K. Zheng; Y. Wang; H.L.W. Chan; C.L. Choy; H.S. Luo Strain-mediated electric-field control of resistance in the La0.85Sr0.15MnO3/0.7Pb(Mg1/3Nb2/3)O30.3PbTiO3 structure, Appl. Phys. Lett., Volume 90 (2007), p. 152904

[43] R.K. Zheng; Y. Wang; Y.K. Liu; G.Y. Gao; L.F. Fei; Y. Jiang; H.L.W. Chan; X.M. Li; H.S. Luo; X.G. Li Epitaxial growth and interface strain coupling effects in manganite film/piezoelectric-crystal multiferroic heterostructures, Mater. Chem. Phys., Volume 133 (2012), pp. 42-46

[44] Y.J. Yang; Z.L. Luo; M.M. Yang; H.L. Huang; H.B. Wang; J. Bao; G.Q. Pan; C. Gao; Q. Hao; S.T. Wang; M. Jokubaitis; W.Z. Zhang; G. Xiao; Y.P. Yao; Y.K. Liu; X.G. Li Piezo-strain induced non-volatile resistance states in (011)La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O30.3PbTiO3 epitaxial heterostructures, Appl. Phys. Lett., Volume 102 (2013), p. 033501

[45] Z.G. Sheng; J. Gao; Y.P. Sun Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN–PT structures, Phys. Rev. B, Volume 79 (2009), p. 174437

[46] R.K. Zheng; Y. Wang; H.L.W. Chan; C.L. Choy; H.S. Luo Substrate-induced strain effect in La0.875Ba0.125MnO3 thin films grown on ferroelectric single-crystal substrates, Appl. Phys. Lett., Volume 92 (2008), p. 082908

[47] Q.P. Chen; J.J. Yang; Y.G. Zhao; S. Zhang; J.W. Wang; M.H. Zhu; Y. Yu; X.Z. Zhang; Z. Wang; B. Yang; D. Xie; T.L. Ren Electric-field control of phase separation and memory effect in Pr0.6Ca0.4MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures, Appl. Phys. Lett., Volume 98 (2011), p. 172507

[48] R.O. Cherifi; V. Ivanovskaya; L.C. Phillips; A. Zobelli; I.C. Infante; E. Jacquet; V. Garcia; S. Fusil; P.R. Briddon; N. Guiblin; A. Mougin; A.A. Ünal; F. Kronast; S. Valencia; B. Dkhil; A. Barthélémy; M. Bibes Electric-field control of magnetic order above room temperature, Nat. Mater., Volume 13 (2014), pp. 345-351

[49] N.A. Pertsev; H. Kohlstedt Magnetic tunnel junction on a ferroelectric substrate, Appl. Phys. Lett., Volume 95 (2009), p. 163503

[50] N.A. Pertsev; H. Kohlstedt Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates, Nanotechnology, Volume 21 (2010), p. 475202

[51] J.-M. Hu; Z. Li; L.-Q. Chen; C.-W. Nan High-density magnetoresistive random access memory operating at ultralow voltage at room temperature, Nat. Commun., Volume 2 (2011), p. 553

[52] C. Cavaco; M. van Kampen; L. Lagae; C. Borghs A room-temperature electrical field-controlled magnetic memory cell, J. Mater. Res., Volume 22 (2007), pp. 2111-2115

[53] N. Lei; T. Devolder; G. Agnus; P. Aubert; L. Daniel; J.-V. Kim; W. Zhao; T. Trypiniotis; R.P. Cowburn; C. Chappert; D. Ravelosona; P. Lecoeur Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures, Nat. Commun., Volume 4 (2013), p. 1378

[54] V. Novosad; Y. Otani; A. Ohsawa; S.G. Kim; K. Fukamichi; J. Koike; K. Maruyama; O. Kitakami; Y. Shimada Novel magnetostrictive memory device, J. Appl. Phys., Volume 87 (2000), pp. 6400-6402

[55] H. Molegraaf; J. Hoffman; C. Vaz et al. Magnetoelectric effects in complex oxides with competing ground states, Adv. Mater., Volume 21 (2009), p. 3470

[56] J.-M. Hu; C.-W. Nan; L.-Q. Chen Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: interface-charge and strain co-mediated magnetoelectric coupling, Phys. Rev. B, Volume 83 (2011), p. 134408

[57] I.V. Ovchinnikov; K.L. Wang Theory of electric-field-controlled surface ferromagnetic transition in metals, Phys. Rev. B, Volume 79 (2009), p. 020402(R)

[58] M.K. Niranjan; J.D. Burton; J.P. Velev; S.S. Jaswal; E.Y. Tsymbal Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: an ab initio study, Appl. Phys. Lett., Volume 95 (2009), p. 052501

[59] T. Cai; S. Ju; J. Lee; N. Sai; A.A. Demkov; Q. Niu; Z. Li; J. Shi; E. Wang Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices, Phys. Rev. B, Volume 80 (2009), p. 140415(R)

[60] J. Lee; N. Sai; T. Cai; Q. Niu; A.A. Demkov Interfacial magnetoelectric coupling in tricomponent superlattices, Phys. Rev. B, Volume 81 (2010), p. 144425

[61] C.G. Duan; S.S. Jaswal; E.Y. Tsymbal Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism, Phys. Rev. Lett., Volume 97 (2006), p. 047201

[62] M. Fechner; I.V. Maznichenko; S. Ostanin; A. Ernst; J. Henk; P. Bruno; I. Mertig Magnetic phase transition in two-phase multiferroics predicted from first principles, Phys. Rev. B, Volume 78 (2008), p. 212406

[63] P.V. Lukashev; J.D. Burton; S.S. Jaswal; E.Y. Tsymbal Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3(001) interface, J. Phys. Condens. Matter, Volume 24 (2012), p. 226003

[64] K. Yamauchi; B. Sanyal; S. Picozzi Interface effects at a half-metal/ferroelectric junction, Appl. Phys. Lett., Volume 91 (2007), p. 062506

[65] M.K. Niranjan; J.P. Velev; C.-G. Duan; S.S. Jaswal; E.Y. Tsymbal Magnetoelectric effect at the Fe3O4/BaTiO3(001) interface: a first-principles study, Phys. Rev. B, Volume 78 (2008), p. 104405

[66] D. Cao; M.-Q. Cai; W. Hu; C.-M. Xu Magnetoelectric effect and critical thickness for ferroelectricity in Co/BaTiO3/Co multiferroic tunnel junctions, J. Appl. Phys., Volume 109 (2011), p. 114107

[67] P.V. Lukashev; T.R. Paudel; J.M. Lopez-Encarnación; S. Adenwalla; E.Y. Tsymbal; J.P. Velev Ferroelectric control of magnetocrystalline anisotropy at cobalt/poly(vinylidene fluoride) interfaces, ACS Nano, Volume 6 (2012), pp. 9745-9750

[68] S. Valencia; A. Crassous; L. Bocher; V. Garcia; X. Moya X; R.O. Cherifi; C. Deranlot; K. Bouzehouane; S. Fusil; A. Zobelli; A. Gloter; N.D. Mathur; A. Gaupp; R. Abrudan; F. Radu; A. Barthélémy; M. Bibes Interface-induced room-temperature multiferroicity in BaTiO3, Nat. Mater., Volume 10 (2011), pp. 753-758

[69] L. Bocher; A. Gloter; A. Crassous; V. Garcia; K. March; A. Zobelli; S. Valencia; S. Enouz-Vedrenne; X. Moya; N.D. Mathur; C. Deranlot; S. Fusil; K. Bouzehouane; M. Bibes; A. Barthélémy; C. Colliex; O. Stephan Atomic, electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions, Nano Lett., Volume 12 (2012), pp. 376-382

[70] P.V. Lukashev; J.D. Burton; S.S. Jaswal; E.Y. Tsymbal Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3(001) interface, J. Phys. Condens. Matter, Volume 24 (2012), p. 226003

[71] M. Lee; H. Choi; Y.-C. Chung Ferroelectric control of magnetic anisotropy of FePt/BaTiO3 magnetoelectric heterojunction: a density functional theory study, J. Appl. Phys., Volume 113 (2013), p. 17C729

[72] R.-Q. Wang; W.-J. Zhu; H.-C. Ding; S.-J. Gong; C.-G. Duan Ferroelectric control of in-plane to out-of-plane magnetization switching at poly(vinylidene fluoride)/iron interface, J. Appl. Phys., Volume 115 (2014), p. 043909

[73] J.D. Burton; E.Y. Tsymbal Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface, Phys. Rev. B, Volume 80 (2009), p. 174406

[74] S. Dong; X. Zhang; R. Yu; J.-M. Liu; E. Dagotto Microscopic model for the ferroelectric field effect in oxide heterostructures, Phys. Rev. B, Volume 84 (2011), p. 155117

[75] V. Garcia; M. Bibes; L. Bocher; S. Valencia; F. Kronast; A. Crassous; X. Moya; S. Enouz-Vedrenne; A. Gloter; D. Imhoff; C. Deranlot; N.D. Mathur; K. Bouzehouane; A. Barthélémy Ferroelectric control of spin polarization, Science, Volume 327 (2010), pp. 1106-1110

[76] H. Ohno; D. Chiba; F. Matsukura; T. Omiya; E. Abe; T. Dietl; Y. Ohno; K. Ohtani Electric-field control of ferromagnetism, Nature, Volume 408 (2000), pp. 944-946

[77] I. Stolichnov; S.W.E. Riester; H.J. Trodah; N. Setter; A.W. Rushforth; K.W. Edmonds; R.P. Campion; C.T. Foxon; B.L. Gallagher; T. Jungwirth Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As, Nat. Mater., Volume 7 (2008), pp. 464-467

[78] J.M.D. Coey; M. Viret; S. von Molnar Mixed-valence manganites, Adv. Phys., Volume 48 (1999), pp. 167-293

[79] X. Hong; A. Posadas; A. Lin A; C. Ahn Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1 − xSrxMnO3, Phys. Rev. B, Volume 68 (2003), p. 133415

[80] S. Mathews; R. Ramesh; T. Venkatesan; J. Benedetto Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science, Volume 276 (1997), pp. 238-240

[81] T. Kanki; H. Tanaka; T. Kawai Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor, Appl. Phys. Lett., Volume 89 (2006), p. 242506

[82] H. Lu; T.A. George; Y. Wang; I. Ketsman; J.D. Burton; C.-W. Bark; S. Ryu; D.J. Kim; J. Wang; C. Binek; P.A. Dowben; A. Sokolov; C.-B. Eom; E.Y. Tsymbal; A. Gruverman Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces, Appl. Phys. Lett., Volume 100 (2012), p. 232904

[83] A.F. Vaz; J. Hoffman; Y. Segal; J.W. Reiner; R.D. Grober; Z. Zhang; C.H. Ahn; F.J. Walker Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures, Phys. Rev. Lett., Volume 104 (2010), p. 127202

[84] C.A.F. Vaz; J. Hoffman; Y. Segal; M.S. Marshall; J.W. Reiner; Z. Zhang; R.D. Grober; F.J. Walker; C.H. Ahn Control of magnetism in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures, Appl. Phys., Volume 109 (2011), p. 07D905

[85] X. Ma; A. Kumar; S. Dussan; H. Zhai; F. Fang; H.B. Zhao; J.F. Scott; R.S. Katiyar; G. Lüpke Charge control of antiferromagnetism at PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 interface, Appl. Phys. Lett., Volume 104 (2014), p. 132905

[86] A. Mardana; S. Ducharme; S. Adenwalla Ferroelectric control of magnetic anisotropy, Nano Lett., Volume 11 (2011), pp. 3862-3867

[87] E.Y. Tsymbal; H. Kohlstedt Tunneling across a ferroelectric, Science, Volume 313 (2006), pp. 181-183

[88] E.Y. Tsymbal; A. Gruverman; V. Garcia; M. Bibes; A. Barthélémy Ferroelectric and multiferroic tunnel junctions, Mater. Res. Soc. Bull., Volume 37 (2012), pp. 138-143

[89] V. Garcia; M. Bibes Ferroelectric tunnel junctions for information storage and processing, Nat. Commun., Volume 5 (2014), p. 4289

[90] H. Kohlstedt; N. Pertsev; J. Rodríguez Contreras; R. Waser Theoretical current–voltage characteristics of ferroelectric tunnel junctions, Phys. Rev. B, Volume 72 (2005), p. 125341

[91] M. Zhuravlev; R. Sabirianov; S. Jaswal; E.Y. Tsymbal Giant electroresistance in ferroelectric tunnel junctions, Phys. Rev. Lett., Volume 94 (2005), p. 246802

[92] V. Garcia; S. Fusil; K. Bouzehouane; S. Enouz-Vedrenne; N.D. Mathur; A. Barthélémy; M. Bibes Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, Volume 460 (2009), pp. 81-84

[93] A. Gruverman; D. Wu; H. Lu; Y. Wang; H.W. Jang; C.M. Folkman; M.Y. Zhuravlev; D. Felker; M. Rzchowski; C.-B. Eom; E.Y. Tsymbal Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale, Nano Lett., Volume 9 (2009), pp. 3539-3543

[94] D. Pantel; S. Goetze; D. Hesse; M. Alexe Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films, ACS Nano, Volume 5 (2011), pp. 6032-6038

[95] A. Chanthbouala; A. Crassous; V. Garcia; K. Bouzehouane; S. Fusil; X. Moya; J. Allibe; B. Dlubak; J. Grollier; S. Xavier; C. Deranlot; A. Mostar; R. Proksch; N.D. Mathur; M. Bibes; A. Barthélémy Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol., Volume 7 (2012), pp. 101-104

[96] H. Yamada; V. Garcia; S. Fusil; S. Boyn; M. Marinova; A. Gloter; S. Xavier; J. Grollier; E. Jacquet; C. Carrétéro; C. Deranlot; M. Bibes; A. Barthélémy Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions, ACS Nano, Volume 7 (2013), pp. 5385-5390

[97] Z. Wen; C. Li; D. Wu; A. Li; N. Ming Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions, Nat. Mater., Volume 12 (2013), pp. 617-621

[98] A. Chanthbouala; V. Garcia; R.O. Cherifi; K. Bouzehouane; S. Fusil; X. Moya; S. Xavier; H. Yamada; C. Deranlot; N.D. Mathur; M. Bibes; A. Barthélémy; J. Grollier A ferroelectric memristor, Nat. Mater., Volume 11 (2012), pp. 860-864

[99] D.J. Kim; H. Lu; S. Ryu; C.-W. Bark; C.-B. Eom; E.Y. Tsymbal; A. Gruverman Ferroelectric tunnel memristor, Nano Lett., Volume 12 (2012), pp. 5697-5702

[100] D. Pantel; S. Goetze; D. Hesse; M. Alexe Reversible electrical switching of spin polarization in multiferroic tunnel junctions, Nat. Mater., Volume 11 (2012), pp. 289-293

[101] V. Garcia; M. Bibes; A. Barthélémy; M. Bowen; E. Jacquet; J.-P. Contour; A. Fert Temperature dependence of the interfacial spin polarization of La2/3Sr1/3MnO3, Phys. Rev. B, Volume 69 (2004), p. 052403

[102] J. Nogues; I.K. Schuller Exchange bias, J. Magn. Magn. Mater., Volume 192 (1999), pp. 203-232

[103] X. Chen; A. Hochstrat; P. Borisov; W. Kleemann Magnetoelectric exchange bias systems in spintronics, Appl. Phys. Lett., Volume 89 (2006), p. 202508

[104] C. Binek; B. Doudin Magnetoelectronics with magnetoelectrics, J. Phys. Condens. Matter, Volume 17 (2005), p. L39-L44

[105] M. Bibes; A. Barthélémy Towards a magnetoelectric memory, Nat. Mater., Volume 7 (2008), pp. 425-426

[106] P. Borisov; A. Hochstrat; X. Chen; W. Kleemann; C. Binek Magnetoelectric switching of exchange bias, Phys. Rev. Lett., Volume 94 (2005), p. 117203

[107] A. Hochstrat; Ch. Binek; Xi Chen; W. Kleemann Extrinsic control of the exchange bias, J. Magn. Magn. Mater., Volume 272–276 (2004), pp. 325-326

[108] X. He; Y. Wang; N. Wu; A.N. Caruso; E. Vescovo; K.D. Belashchenko; P.A. Dowben; C. Binek Robust isothermal electric control of exchange bias at room temperature, Nat. Mater., Volume 9 (2010), pp. 579-585

[109] V. Laukhin; V. Skumryev; X. Marti; D. Hrabovsky; F. Sánchez; M.V. Garcia-Cuenca; C. Ferrater; M. Varela; U. Lüders; J.F. Bobo; J. Fontcuberta Electric-field control of exchange bias in multiferroic epitaxial heterostructures, Phys. Rev. Lett., Volume 97 (2006), p. 227201

[110] M. Fiebig; T. Lottermoser; D. Fröhlich; A.V. Goltsev; R.V. Pisarev Observation of coupled magnetic and electric domains, Nature, Volume 419 (2002), p. 818

[111] V. Skumryev; V. Laukhin; I. Fina; X. Martí; F. Sánchez; M. Gospodinov; J. Fontcuberta Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures, Phys. Rev. Lett., Volume 106 (2011), p. 057206

[112] J. Wang; J.B. Neaton; H. Zheng; V. Nagarajan; S.B. Ogale; B. Liu; D. Viehland; V. Vaithyanathan; D.G. Schlom; U.V. Waghmare; N.A. Spaldin; K.M. Rabe; M. Wuttig; R. Ramesh Epitaxial BiFeO3 multiferroic thin film heterostructures, Science, Volume 299 (2003), pp. 1719-1722

[113] I. Sosnowska; T. Peterlin-Neumaier; E. Steichele Spiral magnetic ordering in bismuth ferrite, J. Phys. C, Solid State Phys., Volume 15 (1982), pp. 4835-4846

[114] F. Bai; J. Wang; M. Wuttig; J. Li; N. Wang; A.P. Pyatakov; A.K. Zvezdin; L.E. Cross; D. Viehland Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization, Appl. Phys. Lett., Volume 86 (2005), p. 032511

[115] H. Béa; M. Bibes; S. Petit; J. Kreisel; A. Barthélémy Structural distortion and magnetism of BiFeO3 epitaxial thin films: a Raman spectroscopy and neutron diffraction study, Philos. Mag. Lett., Volume 87 (2007), pp. 165-174

[116] T. Zhao; A. Scholl; F. Zavaliche; K. Lee; M. Barry; A. Doran; M.P. Cruz; Y.H. Chu; C. Ederer; N.A. Spaldin; R.R. Das; D.M. Kim; S.H. Baek; C.B. Eom; R. Ramesh Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater., Volume 5 (2006), pp. 823-829

[117] J. Allibe; S. Fusil; K. Bouzehouane; C. Daumont; D. Sando; E. Jacquet; C. Deranlot; M. Bibes; A. Barthélémy Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3, Nano Lett., Volume 12 (2012), pp. 1141-1145

[118] J. Dho; X. Qi; H. Kim; J.L. MacManus-Driscoll; M.G. Blamire Large electric polarization and exchange bias in multiferroic BiFeO3, Adv. Mater., Volume 18 (2006), pp. 1445-1448

[119] D. Lebeugle; A. Mougin; M. Viret; D. Colson; L. Ranno Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3, Phys. Rev. Lett., Volume 103 (2009), p. 257601

[120] Y.H. Chu; L.W. Martin; M.B. Holcomb; M. Gajek; S.J. Han; Q. He; N. Blake; C.H. Yang; D. Lee; W. Hu; Q. Zhan; P.L. Yang; A. Fraile-Rodriguez; A. Scholl; S.X. Wang; R. Ramesh Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater., Volume 7 (2008), p. 478

[121] J.T. Heron; M. Trassin; K. Ashraf; M. Gajek; Q. He; S.Y. Yang; D.E. Nikonov; Y.H. Chu; S. Salahuddin; R. Ramesh Electric-field-induced magnetization reversal in a ferromagnet–multiferroic heterostructure, Phys. Rev. Lett., Volume 107 (2011), p. 217202

[122] H. Béa; M. Bibes; S. Cherifi; F. Nolting; B. Warot-Fonrose; S. Fusil; G. Herranz; C. Deranlot; E. Jacquet; K. Bouzehouane; A. Barthélémy Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films, Appl. Phys. Lett., Volume 89 (2006), p. 242114

[123] L.W. Martin; Y.-H. Chu; M.B. Holcomb; M. Huijben; P. Yu; S.-J. Han; D. Lee; S.X. Wang; R. Ramesh Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett., Volume 8 (2008), pp. 2050-2055

[124] H. Béa; M. Bibes; F. Ott; B. Dupé; X.-H. Zhu; S. Petit; S. Fusi; C. Deranlot; K. Bouzehouane; A. Barthélémy Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films, Phys. Rev. Lett., Volume 100 (2008), p. 017204

[125] K.L. Livesey Exchange bias induced by domain walls in BiFeO3, Phys. Rev. B, Volume 82 (2010), p. 064408

[126] J. Allibe; I.C. Infante; S. Fusil; K. Bouzehouane; E. Jacquet; C. Deranlot; M. Bibes; A. Barthélémy Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures, Appl. Phys. Lett., Volume 95 (2009), p. 182503

[127] S.M. Wu; S.A. Cybart; P. Yu; M.D. Rossell; J.X. Zhang; R. Ramesh; R.C. Dynes Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater., Volume 9 (2010), pp. 756-761

[128] P. Yu; J.-S. Lee; S. Okamoto; M.D. Rossell; M. Huijben; C.-H. Yang; Q. He; J.X. Zhang; S.Y. Yang; M.J. Lee; Q.M. Ramasse; R. Erni; Y.-H. Chu; D.A. Arena; C.-C. Kao; L.W. Martin; R. Ramesh Interface ferromagnetism and orbital reconstruction in BiFeO3/La0.7Sr0.3MnO3 heterostructures, Phys. Rev. Lett., Volume 105 (2010), p. 027201

[129] M.J. Calderón; S. Liang; R. Yu; J. Salafranca; S. Dong; S. Yunoki; L. Brey; A. Moreo; E. Dagotto Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers, Phys. Rev. B, Volume 84 (2011), p. 024422

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Domains and domain walls in multiferroics

Sylvia Matzen; Stéphane Fusil

C. R. Phys (2015)


Novel magneto-electric multiferroics from first-principles calculations

Julien Varignon; Nicholas C. Bristowe; Éric Bousquet; ...

C. R. Phys (2015)


Bismuth-based perovskites as multiferroics

Mael Guennou; Michel Viret; Jens Kreisel

C. R. Phys (2015)