In this article we interpret the mechanical properties of icosahedral quasicrystals with the dislocation theory. After having defined the concept of dislocation in a periodic crystal, we extend this notion to quasicrystals in the 6-dimensional space. We show that perfect dislocations and imperfect dislocations trailing a phason fault can be defined and observed in transmission electron microscopy (TEM). In-situ straining TEM experiments at high temperature show that dislocations move solely by climb, a non-conservative motion-requiring diffusion. This behavior at variance with that of crystals which deform mainly by glide is explained by the atypical nature of the atomic structure of icosahedral quasicrystals.
Dans cet article, nous interprétons les propriétés mécaniques des quasicristaux icosahédriques par la théorie des dislocations. Après avoir défini le concept de dislocation dans les cristaux périodiques, nous étendons cette notion aux quasicristaux dans lʼespace à 6 dimensions. Nous montrons que lʼon peut définir et observer en microscopie électronique en transmission (MET) des dislocations parfaites et imparfaites traînant des fautes de phasons. Des observations en MET in situ à haute température montrent que les dislocations se déplacent uniquement par montée pure, un mouvement non conservatif requérant de la diffusion. Ce comportement, contraire à celui des cristaux qui se déforment principalement par glissement, est expliqué par la nature atypique de la structure atomique des quasicristaux icosahédraux.
Mot clés : Quasicristaux, Propriétés mécaniques, Dislocations, MET
Frédéric Mompiou 1; Daniel Caillard 1
@article{CRPHYS_2014__15_1_82_0, author = {Fr\'ed\'eric Mompiou and Daniel Caillard}, title = {Dislocations and mechanical properties of icosahedral quasicrystals}, journal = {Comptes Rendus. Physique}, pages = {82--89}, publisher = {Elsevier}, volume = {15}, number = {1}, year = {2014}, doi = {10.1016/j.crhy.2013.09.003}, language = {en}, }
Frédéric Mompiou; Daniel Caillard. Dislocations and mechanical properties of icosahedral quasicrystals. Comptes Rendus. Physique, Volume 15 (2014) no. 1, pp. 82-89. doi : 10.1016/j.crhy.2013.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.003/
[1] Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 400–401 (2005), p. 283
[2] Philos. Mag., 86 (2006), p. 4139
[3] Phys. Rev. B, 74 (2006), p. 21420
[4] Dislocations and plasticity of icosahedral quasicrystals (J.P. Hirth, ed.), Dislocations in Solids, vol. 14, Elsevier, 2008, pp. 251-331 (Ch. 85)
[5] Philos. Mag. A, 64 (1991), p. 819
[6] Philos. Mag. Lett., 65 (1992), p. 1
[7] Philos. Mag., 83 (2003), p. 3133
[8] Jpn. J. Appl. Phys. (1987), p. L155
[9] Quasicrystals and Incommensurate Structures in Condensed Matter (M.J. Yaman; D. Romen; V. Castano; A. Gomez, eds.), World Scientific, Singapore, 1990, p. 498
[10] Philos. Mag. A, 78 (1998), p. 273
[11] Mater. Sci. Forum, 150–151 (1994), p. 323
[12] Philos. Mag. Lett., 66 (1992), p. 235
[13] Philos. Mag. Lett., 72 (1995), p. 375
[14] Acta Math., 50 (2002), p. 4499
[15] Philos. Mag. Lett., 67 (1993), p. 9
[16] Mat. Res. Symp. Proc., 553 (1999), p. 319
[17] Jpn. J. Appl. Phys., 32 (1993), p. 2063
[18] MRS Symp. Proc., 553 (1999), p. 283
[19] Scr. Mater., 49 (2003), p. 19
[20] Scr. Mater., 49 (2003), p. 33
[21] Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 233 (1997), p. 103
[22] Philos. Mag. Lett., 78 (1998), p. 369
[23] Philos. Mag., 83 (2003), p. 2449
[24] Philos. Mag. A, 80 (2000), p. 237
[25] Philos. Mag., 83 (2003), p. 3133
[26] MRS Symp. Proc., 553 (1999), p. 301
[27] Philos. Mag., 84 (2004), p. 2777
[28] Philos. Mag. Lett., 84 (2004), p. 555
[29] Proc. 5th Int. Conf. on Quasicrystals (C. Janot; M. Rosseri, eds.), World Scientific, Singapore, 1995, p. 298
[30] Acta Mater., 56 (2008), p. 2262
Cited by Sources:
Comments - Policy