[Dislocation et propriétés mécaniques des quasicristaux icosahédraux]
Dans cet article, nous interprétons les propriétés mécaniques des quasicristaux icosahédriques par la théorie des dislocations. Après avoir défini le concept de dislocation dans les cristaux périodiques, nous étendons cette notion aux quasicristaux dans lʼespace à 6 dimensions. Nous montrons que lʼon peut définir et observer en microscopie électronique en transmission (MET) des dislocations parfaites et imparfaites traînant des fautes de phasons. Des observations en MET in situ à haute température montrent que les dislocations se déplacent uniquement par montée pure, un mouvement non conservatif requérant de la diffusion. Ce comportement, contraire à celui des cristaux qui se déforment principalement par glissement, est expliqué par la nature atypique de la structure atomique des quasicristaux icosahédraux.
In this article we interpret the mechanical properties of icosahedral quasicrystals with the dislocation theory. After having defined the concept of dislocation in a periodic crystal, we extend this notion to quasicrystals in the 6-dimensional space. We show that perfect dislocations and imperfect dislocations trailing a phason fault can be defined and observed in transmission electron microscopy (TEM). In-situ straining TEM experiments at high temperature show that dislocations move solely by climb, a non-conservative motion-requiring diffusion. This behavior at variance with that of crystals which deform mainly by glide is explained by the atypical nature of the atomic structure of icosahedral quasicrystals.
Mots-clés : Quasicristaux, Propriétés mécaniques, Dislocations, MET
Frédéric Mompiou 1 ; Daniel Caillard 1
@article{CRPHYS_2014__15_1_82_0, author = {Fr\'ed\'eric Mompiou and Daniel Caillard}, title = {Dislocations and mechanical properties of icosahedral quasicrystals}, journal = {Comptes Rendus. Physique}, pages = {82--89}, publisher = {Elsevier}, volume = {15}, number = {1}, year = {2014}, doi = {10.1016/j.crhy.2013.09.003}, language = {en}, }
Frédéric Mompiou; Daniel Caillard. Dislocations and mechanical properties of icosahedral quasicrystals. Comptes Rendus. Physique, Quasicristaux / Quasicrystals, Volume 15 (2014) no. 1, pp. 82-89. doi : 10.1016/j.crhy.2013.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.003/
[1] Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 400–401 (2005), p. 283
[2] Philos. Mag., 86 (2006), p. 4139
[3] Phys. Rev. B, 74 (2006), p. 21420
[4] Dislocations and plasticity of icosahedral quasicrystals (J.P. Hirth, ed.), Dislocations in Solids, vol. 14, Elsevier, 2008, pp. 251-331 (Ch. 85)
[5] Philos. Mag. A, 64 (1991), p. 819
[6] Philos. Mag. Lett., 65 (1992), p. 1
[7] Philos. Mag., 83 (2003), p. 3133
[8] Jpn. J. Appl. Phys. (1987), p. L155
[9] Quasicrystals and Incommensurate Structures in Condensed Matter (M.J. Yaman; D. Romen; V. Castano; A. Gomez, eds.), World Scientific, Singapore, 1990, p. 498
[10] Philos. Mag. A, 78 (1998), p. 273
[11] Mater. Sci. Forum, 150–151 (1994), p. 323
[12] Philos. Mag. Lett., 66 (1992), p. 235
[13] Philos. Mag. Lett., 72 (1995), p. 375
[14] Acta Math., 50 (2002), p. 4499
[15] Philos. Mag. Lett., 67 (1993), p. 9
[16] Mat. Res. Symp. Proc., 553 (1999), p. 319
[17] Jpn. J. Appl. Phys., 32 (1993), p. 2063
[18] MRS Symp. Proc., 553 (1999), p. 283
[19] Scr. Mater., 49 (2003), p. 19
[20] Scr. Mater., 49 (2003), p. 33
[21] Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 233 (1997), p. 103
[22] Philos. Mag. Lett., 78 (1998), p. 369
[23] Philos. Mag., 83 (2003), p. 2449
[24] Philos. Mag. A, 80 (2000), p. 237
[25] Philos. Mag., 83 (2003), p. 3133
[26] MRS Symp. Proc., 553 (1999), p. 301
[27] Philos. Mag., 84 (2004), p. 2777
[28] Philos. Mag. Lett., 84 (2004), p. 555
[29] Proc. 5th Int. Conf. on Quasicrystals (C. Janot; M. Rosseri, eds.), World Scientific, Singapore, 1995, p. 298
[30] Acta Mater., 56 (2008), p. 2262
- On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors, Annual Review of Earth and Planetary Sciences, Volume 52 (2024) no. 1, p. 409 | DOI:10.1146/annurev-earth-031621-063108
- Anti-plane problem of a nano-sharp crack in one-dimensional hexagonal piezoelectric quasicrystals with the electrically semi-permeable condition, Archive of Applied Mechanics, Volume 93 (2023) no. 4, p. 1423 | DOI:10.1007/s00419-022-02336-6
- Cold field emission electron source: From higher brightness to ultrafast beam, Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 (2023), p. 107 | DOI:10.1016/b978-0-443-19324-8.00002-x
- References, Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 (2023), p. 217 | DOI:10.1016/b978-0-443-19324-8.09997-1
- Interface crack behaviors disturbed by Love waves in a 1D hexagonal quasicrystal coating–substrate structure, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 2 | DOI:10.1007/s00033-023-01947-5
- Probing the small-scale plasticity and phase stability of an icosahedral quasicrystal i-Al-Pd-Mn at elevated temperatures, Physical Review Materials, Volume 5 (2021) no. 5 | DOI:10.1103/physrevmaterials.5.053602
- Deformation Behavior and Structure of i-Al-Cu-Fe Quasicrystalline Alloy in Vicinity of Nanoindenter Indentation, Physics of the Solid State, Volume 60 (2018) no. 2, p. 312 | DOI:10.1134/s1063783418020233
- Analysis of cracks in one-dimensional hexagonal quasicrystals with the heat effect, International Journal of Solids and Structures, Volume 120 (2017), p. 146 | DOI:10.1016/j.ijsolstr.2017.04.036
- Pure climb creep mechanism drives flow in Earth’s lower mantle, Science Advances, Volume 3 (2017) no. 3 | DOI:10.1126/sciadv.1601958
- Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack, Theoretical and Applied Fracture Mechanics, Volume 88 (2017), p. 18 | DOI:10.1016/j.tafmec.2016.11.005
- The electric charge and climb of edge dislocations in perovskite oxides: The case of high-pressure MgSiO3 bridgmanite, Acta Materialia, Volume 106 (2016), p. 313 | DOI:10.1016/j.actamat.2016.01.019
Cité par 11 documents. Sources : Crossref
Commentaires - Politique