Comptes Rendus
Quasicrystals / Quasicristaux
Dislocations and mechanical properties of icosahedral quasicrystals
[Dislocation et propriétés mécaniques des quasicristaux icosahédraux]
Comptes Rendus. Physique, Quasicristaux / Quasicrystals, Volume 15 (2014) no. 1, pp. 82-89.

Dans cet article, nous interprétons les propriétés mécaniques des quasicristaux icosahédriques par la théorie des dislocations. Après avoir défini le concept de dislocation dans les cristaux périodiques, nous étendons cette notion aux quasicristaux dans lʼespace à 6 dimensions. Nous montrons que lʼon peut définir et observer en microscopie électronique en transmission (MET) des dislocations parfaites et imparfaites traînant des fautes de phasons. Des observations en MET in situ à haute température montrent que les dislocations se déplacent uniquement par montée pure, un mouvement non conservatif requérant de la diffusion. Ce comportement, contraire à celui des cristaux qui se déforment principalement par glissement, est expliqué par la nature atypique de la structure atomique des quasicristaux icosahédraux.

In this article we interpret the mechanical properties of icosahedral quasicrystals with the dislocation theory. After having defined the concept of dislocation in a periodic crystal, we extend this notion to quasicrystals in the 6-dimensional space. We show that perfect dislocations and imperfect dislocations trailing a phason fault can be defined and observed in transmission electron microscopy (TEM). In-situ straining TEM experiments at high temperature show that dislocations move solely by climb, a non-conservative motion-requiring diffusion. This behavior at variance with that of crystals which deform mainly by glide is explained by the atypical nature of the atomic structure of icosahedral quasicrystals.

DOI : 10.1016/j.crhy.2013.09.003
Keywords: Quasicrystals, Mechanical properties, Dislocations, TEM
Mots-clés : Quasicristaux, Propriétés mécaniques, Dislocations, MET

Frédéric Mompiou 1 ; Daniel Caillard 1

1 CEMES–CNRS and université de Toulouse, 29, rue Marvig, 31055 Toulouse, France
@article{CRPHYS_2014__15_1_82_0,
     author = {Fr\'ed\'eric Mompiou and Daniel Caillard},
     title = {Dislocations and mechanical properties of icosahedral quasicrystals},
     journal = {Comptes Rendus. Physique},
     pages = {82--89},
     publisher = {Elsevier},
     volume = {15},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crhy.2013.09.003},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Mompiou
AU  - Daniel Caillard
TI  - Dislocations and mechanical properties of icosahedral quasicrystals
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 82
EP  - 89
VL  - 15
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.003
LA  - en
ID  - CRPHYS_2014__15_1_82_0
ER  - 
%0 Journal Article
%A Frédéric Mompiou
%A Daniel Caillard
%T Dislocations and mechanical properties of icosahedral quasicrystals
%J Comptes Rendus. Physique
%D 2014
%P 82-89
%V 15
%N 1
%I Elsevier
%R 10.1016/j.crhy.2013.09.003
%G en
%F CRPHYS_2014__15_1_82_0
Frédéric Mompiou; Daniel Caillard. Dislocations and mechanical properties of icosahedral quasicrystals. Comptes Rendus. Physique, Quasicristaux / Quasicrystals, Volume 15 (2014) no. 1, pp. 82-89. doi : 10.1016/j.crhy.2013.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.003/

[1] F. Mompiou; D. Caillard Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 400–401 (2005), p. 283

[2] D. Gratias; J.T. Beauchesne; F. Mompiou; D. Caillard Philos. Mag., 86 (2006), p. 4139

[3] M. Quiquandon; D. Gratias Phys. Rev. B, 74 (2006), p. 21420

[4] J. Bonneville; D. Caillard; P. Guyot Dislocations and plasticity of icosahedral quasicrystals (J.P. Hirth, ed.), Dislocations in Solids, vol. 14, Elsevier, 2008, pp. 251-331 (Ch. 85)

[5] M. Wollgarten; D. Gratias; Z. Zhang; K. Urban Philos. Mag. A, 64 (1991), p. 819

[6] M. Wollgarten; Z. Zhang; K. Urban K Philos. Mag. Lett., 65 (1992), p. 1

[7] F. Mompiou; L. Bresson; P. Cordier; D. Caillard Philos. Mag., 83 (2003), p. 3133

[8] K. Hiraga K; M. Hirabayashi Jpn. J. Appl. Phys. (1987), p. L155

[9] J. Devaud-Rzepski; M. Cornier-Quiquandon; D. Gratias Quasicrystals and Incommensurate Structures in Condensed Matter (M.J. Yaman; D. Romen; V. Castano; A. Gomez, eds.), World Scientific, Singapore, 1990, p. 498

[10] R. Wang; M. Feuerbacher; W. Yang; K. Urban Philos. Mag. A, 78 (1998), p. 273

[11] R. Wang; J. Feng; Y. Yan; M. Dai Mater. Sci. Forum, 150–151 (1994), p. 323

[12] M.X. Dai Philos. Mag. Lett., 66 (1992), p. 235

[13] R. Rosenfeld; M. Feuerbacher; B. Baufeld; M. Bartsch; M. Wollgarten; G. Hanke; M. Beyss; U. Messerschmidt; K. Urban Philos. Mag. Lett., 72 (1995), p. 375

[14] D. Caillard; C. Roucau; L. Bresson; D. Gratias Acta Math., 50 (2002), p. 4499

[15] M. Wollgarten; H. Lakner; K. Urban Philos. Mag. Lett., 67 (1993), p. 9

[16] U. Messerschmidt; B. Geyer; M. Bratsch; M. Feuerbacher; K. Urban Mat. Res. Symp. Proc., 553 (1999), p. 319

[17] S. Takeuchi; T. Hashimoto Jpn. J. Appl. Phys., 32 (1993), p. 2063

[18] S. Takeuchi MRS Symp. Proc., 553 (1999), p. 283

[19] S. Takeuchi Scr. Mater., 49 (2003), p. 19

[20] U. Messerschmidt; M. Bartsch Scr. Mater., 49 (2003), p. 33

[21] M. Feuerbacher; C. Meztmacher; M. Wollgarten; K. Urban; B. Baufeld; M. Bartsch; U. Messerschmidt Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., 233 (1997), p. 103

[22] R. Mikulla; P. Gumbsch; H.R. Trebin Philos. Mag. Lett., 78 (1998), p. 369

[23] G.D. Schaaf; J. Roth; H.R. Trebin Philos. Mag., 83 (2003), p. 2449

[24] D. Caillard; G. Vanderschaeve; L. Bresson; D. Gratias Philos. Mag. A, 80 (2000), p. 237

[25] F. Mompiou; L. Bresson; P. Cordier; D. Caillard Philos. Mag., 83 (2003), p. 3133

[26] D. Caillard; G. Vandershaeve; L. Bresson; D. Gratias MRS Symp. Proc., 553 (1999), p. 301

[27] F. Mompiou; D. Caillard; M. Feuerbacher Philos. Mag., 84 (2004), p. 2777

[28] F. Mompiou; D. Caillard Philos. Mag. Lett., 84 (2004), p. 555

[29] R. Mikulla; J. Roth; H.R. Trebin Proc. 5th Int. Conf. on Quasicrystals (C. Janot; M. Rosseri, eds.), World Scientific, Singapore, 1995, p. 298

[30] F. Mompiou; D. Caillard Acta Mater., 56 (2008), p. 2262

  • Philippe Carrez; Alexandre Mussi; Patrick Cordier On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors, Annual Review of Earth and Planetary Sciences, Volume 52 (2024) no. 1, p. 409 | DOI:10.1146/annurev-earth-031621-063108
  • Yuanyuan Ma; Xuefen Zhao; Yueting Zhou; Shenghu Ding Anti-plane problem of a nano-sharp crack in one-dimensional hexagonal piezoelectric quasicrystals with the electrically semi-permeable condition, Archive of Applied Mechanics, Volume 93 (2023) no. 4, p. 1423 | DOI:10.1007/s00419-022-02336-6
  • Florent Houdellier Cold field emission electron source: From higher brightness to ultrafast beam, Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 (2023), p. 107 | DOI:10.1016/b978-0-443-19324-8.00002-x
  • References, Coherent Electron Microscopy: Designing Faster and Brighter Electron Sources, Volume 227 (2023), p. 217 | DOI:10.1016/b978-0-443-19324-8.09997-1
  • Yuanyuan Ma; Yueting Zhou; Juan Yang; Xuefen Zhao; Shenghu Ding Interface crack behaviors disturbed by Love waves in a 1D hexagonal quasicrystal coating–substrate structure, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 2 | DOI:10.1007/s00033-023-01947-5
  • Changjun Cheng; Yuan Xiao; Michel J. R. Haché; Zhiying Liu; Jeffrey M. Wheeler; Yu Zou Probing the small-scale plasticity and phase stability of an icosahedral quasicrystal i-Al-Pd-Mn at elevated temperatures, Physical Review Materials, Volume 5 (2021) no. 5 | DOI:10.1103/physrevmaterials.5.053602
  • E. V. Shalaeva; I. O. Selyanin; E. O. Smirnova; S. V. Smirnov; D. D. Novachek Deformation Behavior and Structure of i-Al-Cu-Fe Quasicrystalline Alloy in Vicinity of Nanoindenter Indentation, Physics of the Solid State, Volume 60 (2018) no. 2, p. 312 | DOI:10.1134/s1063783418020233
  • CuiYing Fan; YanPeng Yuan; YiBo Pan; MingHao Zhao Analysis of cracks in one-dimensional hexagonal quasicrystals with the heat effect, International Journal of Solids and Structures, Volume 120 (2017), p. 146 | DOI:10.1016/j.ijsolstr.2017.04.036
  • Francesca Boioli; Philippe Carrez; Patrick Cordier; Benoit Devincre; Karine Gouriet; Pierre Hirel; Antoine Kraych; Sebastian Ritterbex Pure climb creep mechanism drives flow in Earth’s lower mantle, Science Advances, Volume 3 (2017) no. 3 | DOI:10.1126/sciadv.1601958
  • X.-Y. Li; Y.-W. Wang; P.-D. Li; G.-Z. Kang; R. Müller Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack, Theoretical and Applied Fracture Mechanics, Volume 88 (2017), p. 18 | DOI:10.1016/j.tafmec.2016.11.005
  • P. Hirel; P. Carrez; E. Clouet; P. Cordier The electric charge and climb of edge dislocations in perovskite oxides: The case of high-pressure MgSiO3 bridgmanite, Acta Materialia, Volume 106 (2016), p. 313 | DOI:10.1016/j.actamat.2016.01.019

Cité par 11 documents. Sources : Crossref

Commentaires - Politique