Comptes Rendus
Out-of-equilibrium dynamics of classical and quantum complex systems
[Dynamique hors équilibre de systèmes complexes classiques et quantiques]
Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 685-699.

Lʼéquilibre est une situation plutôt idéale, lʼexception plutôt que la règle dans la Nature. Chaque fois que les paramètres externes ou internes dʼun système physique subissent une modification, sa relaxation subséquente vers lʼéquilibre peut, soit être impossible, soit prendre très longtemps. Du point de vue de la physique fondamentale, aucun principe générique tel que ceux de la thermodynamique ne permet de comprendre complètement son comportement. Lʼalternative consiste à traiter chaque cas séparément. Il est illusoire de tenter de donner, au moins à ce stade, une description complète de toutes les situations hors équilibre. Mais on peut essayer dʼidentifier et de caractériser quelques traits concrets, mais toujours généraux, dʼune classe de problèmes hors équilibre – restant à identifier – et de rechercher une description unifée de ceux-ci. Dans cette contribution, je décris brièvement le comportement et la théorie dʼun jeu de systèmes hors équilibre et je tente de mettre en lumière des traits communs et quelques lois générales qui ont vu le jour au cours des dernières années.

Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied, its subsequent relaxation to equilibrium may be either impossible or take very long times. From the point of view of fundamental physics, no generic principle such as the ones of thermodynamics allows us to fully understand its behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete, but still general features of a class of out-of-equilibrium problems – yet to be identified – and search for a unified description of these. In this report, I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.

Publié le :
DOI : 10.1016/j.crhy.2013.09.004
Keywords: Out-of-equilibrium dynamics, Disordered systems, Driven dynamics
Mot clés : Dynamique hors équilibre, Systèmes désordonnés, Dynamique sous sollicitation

Leticia F. Cugliandolo 1

1 Université Pierre-et-Marie-Curie – Paris 6, Laboratoire de physique théorique et hautes énergies, 4, place Jussieu, tour 13, 5
@article{CRPHYS_2013__14_8_685_0,
     author = {Leticia F. Cugliandolo},
     title = {Out-of-equilibrium dynamics of classical and quantum complex systems},
     journal = {Comptes Rendus. Physique},
     pages = {685--699},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.09.004},
     language = {en},
}
TY  - JOUR
AU  - Leticia F. Cugliandolo
TI  - Out-of-equilibrium dynamics of classical and quantum complex systems
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 685
EP  - 699
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.09.004
LA  - en
ID  - CRPHYS_2013__14_8_685_0
ER  - 
%0 Journal Article
%A Leticia F. Cugliandolo
%T Out-of-equilibrium dynamics of classical and quantum complex systems
%J Comptes Rendus. Physique
%D 2013
%P 685-699
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.09.004
%G en
%F CRPHYS_2013__14_8_685_0
Leticia F. Cugliandolo. Out-of-equilibrium dynamics of classical and quantum complex systems. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 685-699. doi : 10.1016/j.crhy.2013.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.004/

[1] V.I. Arnold Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1982

[2] D. Ruelle Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, Boston, 1989

[3] S.H. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology Chemistry and Engineering, Westview Press, 1994

[4] B. Chopard; M. Droz Cellular Automata Modeling of Physical Systems, Cambridge University Press, 2005

[5] K. Kaneko; I. Tsuda Complex Systems: Chaos and Beyond, a Constructive Approach with Applications in Life Sciences, Springer-Verlag, 2000

[6] Chaos, 15 (2005) (See the collection of articles published in)

[7] V.I. Arnold; A. Weinstein; K. Vogtmann Mathematical Methods of Classical Mechanics, Springer, 1997

[8] U. Weiss Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol. 10, World Scientific, Singapore, 1999

[9] H.E. Stanley Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford and New York, 1971

[10] N. Goldenfeld Lectures on Phase Transitions and the Renormalization Group, Perseus Publishing, 1992

[11] J. Kurchan Markov Process. Relat. Fields, 9 (2002), p. 243

[12] B. Berche; C. Chatelain Phase transitions in two-dimensional random Potts models (Yu. Holovatch, ed.), Order, Disorder, and Criticality, World Scientific, Singapore, 2004

[13] K.H. Fischer; J.A. Hertz Spin Glasses, Cambridge University Press, 1991

[14] M. Mézard; G. Parisi; M.A. Virasoro Spin-Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, World Scientific, Singapore, 1987

[15] M. Talagrand Spin Glasses, a Challenge for Mathematicians: Cavity and Mean-Field Models, Springer-Verlag, Berlin, 2003

[16] M. Talagrand Ann. Math., 163 (2006), p. 221

[17] D.S. Fisher; D.A. Huse Phys. Rev. Lett., 56 (1986), p. 1601

[18] F. Iglói; C. Monthus Phys. Rep., 412 (2005), p. 277

[19] P. Le Doussal Exact results and open questions in first principle functional RG | arXiv

[20] B. Delamotte An introduction to the nonperturbative renormalization group | arXiv

[21] E.-J. Donth The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials, Springer, 2011

[22] K. Binder; W. Kob Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics, World Scientific, Singapore, 2005

[23] L. Berthier; G. Biroli Rev. Mod. Phys., 83 (2011), p. 587

[24] L.F. Cugliandolo Dynamics of glassy systems, Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, Les Houches Session LXXVII (2003) (See e.g., Les Houches, 1–26 July 2002) | arXiv

[25] Y. Levin; R. Pakter; F.B. Rizzato; T.N. Teles; F.R. da; C. Benetti Non equilibrium statistical mechanics of systems with long-range interactions: ubiquity of core-halo distributions, Phys. Rep. (2013) (in press)

[26] Introduction to Frustrated Magnetism (C. Lacroix et al., eds.), Springer Series in Solid-State Sciences, vol. 164, 2011

[27] M. Mézard; A. Montanari Information, Physics and Computation, Oxford University Press, 2009

[28] J.-P. Bouchaud; A. Georges Phys. Rep., 195 (1990), p. 127

[29] J. Kurchan Les Houches, 2008 (2010)

[30] F. Ritort Adv. Chem. Phys., 137 (2008), p. 31

[31] P. Gaspard Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics, Leuven, Belgium (2005)

[32] K. Sekimoto Stochastic Energetics, Lecture Notes in Physics, vol. 799, Springer-Verlag, Berlin, 2010

[33] U. Seifert Rep. Prog. Phys., 75 (2012), p. 126001

[34] J.P. Garrahan; R.L. Jack; V. Lecomte; E. Pitard; K. van Duijvendijk; F. van Wijland Phys. Rev. Lett., 98 (2007), p. 195702

[35] A.-L. Barabási; H.E. Stanley Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995

[36] T. Halpin-Healey; Y.-C. Zhang Phys. Rep., 254 (1995), p. 215

[37] G. Blatter; M.V. Feigelman; V.B. Geshkenbein; A.I. Larkin; V.M. Vinokur Rev. Mod. Phys., 66 (1994), p. 1125

[38] T. Giamarchi; P. Le Doussal Statics and dynamics of disordered elastic systems | arXiv

[39] T. Nattermann; S. Scheidl Adv. Phys., 49 (2000), p. 607

[40] T. Giamarchi; A.B. Kolton; A. Rosso Dynamics of disordered elastic systems | arXiv

[41] J.L. Iguain; S. Bustingorry; A.B. Kolton; L.F. Cugliandolo Phys. Rev. B, 80 (2009), p. 094201

[42] J.P. Sethna Crackling noise and avalanches: scaling, critical phenomena, and the renormalization group, Les Houches (2007)

[43] P. Le Doussal; K. Wiese Avalanche dynamics of elastic interfaces | arXiv

[44] F. Corberi; L.F. Cugliandolo; H. Yoshino Growing length scales in aging systems (L. Berthier et al., eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Oxford University Press, 2011

[45] P.C. Hohenberg; B.I. Halperin Rev. Mod. Phys., 49 (1977), p. 435

[46] H.K. Janssen; B. Schaub; B. Schmittman Z. Phys. B, Condens. Matter, 73 (1989), p. 539

[47] P. Calabrese; A. Gambassi J. Phys. A, 38 (2005), p. R133

[48] P. Calabrese; A. Gambassi J. Phys. A, 38 (2005), p. R133

[49] F. Corberi; E. Lippiello; M. Zannetti J. Stat. Mech. (2007), p. P07002

[50] K. Binder; D. Stauffer Adv. Phys., 25 (1976), p. 343

[51] K. Binder Spinodal decomposition versus nucleation and growth (S. Puri; V. Wadhawan, eds.), Kinetics of Phase Transitions, CRC Press, Boca Raton, FL, 2009, pp. 63-98

[52] A.J. Bray Adv. Phys., 43 (1994), p. 357

[53] E. Vincent; J. Hammann; M. Ocio; J.-P. Bouchaud; L.F. Cugliandolo Slow dynamics and aging in spin-glasses, Complex Behaviour of Glassy Systems, Lecture Notes in Physics, vol. 492, Springer-Verlag, Berlin, 1997 | arXiv

[54] S. Franz; G. Semerjian Analytical approaches to time and length scales in models of glasses (L. Berthier; G. Biroli; J.-P. Bouchaud; L. Cipelletti; W. van Saarloos, eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Oxford University Press, 2011

[55] S. Leonard; P. Mayer; P. Sollich; L. Berthier; J.P. Garrahan; J.P. Garrahan; P. Sollich; C. Toninelli J. Stat. Mech. (L. Berthier; G. Biroli; J.-P. Bouchaud; L. Cipelletti; W. van Saarloos, eds.), Kinetically constrained models, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, P07017, Oxford University Press, 2007

[56] B. Schmittmann; R.K.P. Zia Statistical Mechanics of Driven Diffusive Systems (C. Domb; J.L. Lebowitz, eds.), Phase Transition and Critical Phenomena, vol. 17, Academic Press, London, 1995

[57] R. Stinchcombe Adv. Phys., 50 (2001), p. 431

[58] G.M. Schütz Exactly solvable models for many-body systems far from equilibrium, Phase Transitions and Critical Phenomena, vol. 19, 2001

[59] R.A. Blythe; M.R. Evans J. Phys. A, 40 (2007), p. R333

[60] U.C. Täuber; M. Howard; B.P. Vollmayr-Lee J. Phys. A, 38 (2005), p. R79

[61] U.W. Tauber Field-theoretic methods (R.A. Meyers, ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2009

[62] M.C. Cross; P.C. Hohenberg Rev. Mod. Phys., 65 (1993), p. 851

[63] D.A. Fletcher; P.L. Geissler Annu. Rev. Phys. Chem., 60 (2009), p. 469

[64] L.F. Cugliandolo J. Phys. A, 44 (2011), p. 483001

[65] D.J. Evans; D.J. Searles Adv. Phys., 51 (2002), p. 1529

[66] G. Gallavotti Eur. Phys. J. B, 61 (2008), p. 1

[67] I. Bloch; J. Dalibard; W. Zwerger Rev. Mod. Phys., 80 (2008), p. 885

[68] A. Polkovnikov; K. Sengupta; A. Silva; M. Vengalattore Rev. Mod. Phys., 83 (2011), p. 863

[69] A. Dutta; U. Divakaran; D. Sen; B.K. Chakrabarti; T.F. Rosenbaum; G. Aeppli Quantum phase transitions in transverse field spin models: from statistical physics to quantum information | arXiv

[70] M. Rigol; V. Dunjko; M. Olshanii Nature, 452 (2008), p. 854

[71] E. Canovi; D. Rossini; R. Fazio; G.E. Santoro; A. Silva Phys. Rev. B, 83 (2011), p. 094431

[72] U. Schollwoeck Ann. Phys., 326 (2011), p. 96

[73] J. Berges Les Houches IV, 2012 (2013) (in press)

[74] M. Schiró; M. Fabrizio Phys. Rev. B, 83 (2011), p. 165105

[75] C. Aron; C. Weber; G. Kotliar Phys. Rev. B, 87 (2013), p. 125113

[76] L. Pollet Rep. Prog. Phys., 75 (2012), p. 094501

[77] L. Foini; L.F. Cugliandolo; A. Gambassi Phys. Rev. B, 84 (2011), p. 212404

[78] A.J. Leggett; S. Chakravarty; A.T. Dorsey; M.P.A. Fisher; A. Garg; W. Zwerger Rev. Mod. Phys., 59 (1987), p. 1

[79] M.A. Cazalilla; R. Citro; T. Giamarchi; E. Orignac; M. Rigol Rev. Mod. Phys., 83 (2011), p. 1405

[80] H. Grabert; P. Schramm; G.-L. Ingold Phys. Rep., 168 (1988), p. 115

[81] C. Aron; G. Biroli; L.F. Cugliandolo Phys. Rev. Lett., 102 (2009), p. 050404

[82] D. Poletti; J.-S. Bernier; A. Georges; C. Kollath Dissipative quantum systems: from two to many atoms | arXiv

[83] T. Vojta Phases and phase transitions in disordered quantum systems (in: XVII Training Course in the Physics of Strongly Correlated Systems, Vietri sul Mare, Italy) | arXiv

[84] A. Kamenev; A. Levchenko Adv. Phys., 58 (2009), p. 197

[85] L.F. Cugliandolo Int. J. Mod. Phys. B, 20 (2006), p. 2795

[86] V. Bapst; L. Foini; F. Krzakala; G. Semerjian; F. Zamponi Phys. Rep., 523 (2013), p. 127

[87] D. Bernard; B. Doyon Non-equilibrium steady-states in conformal field theory | arXiv

[88] A. Caso; L. Arrachea; G.S. Lozano Phys. Rev. B, 81 (2010), p. 041301(R)

[89] R. Dorner; S.R. Clark; L. Heaney; R. Fazio; J. Goold; V. Vedral Extracting quantum work statistics and fluctuation theorems by single qubit interferometry | arXiv

[90] J. Cardy Ann. Phys., 318 (2005), p. 81

[91] M. Bauer; D. Bernard Phys. Rep., 432 (2006), p. 115

Cité par Sources :

Commentaires - Politique